
Int. J. Inf. Secur.
DOI 10.1007/s10207-007-0017-y

SPECIAL ISSUE PAPER

Audit-based compliance control

J. G. Cederquist · R. Corin · M. A. C. Dekker ·
S. Etalle · J. I. den Hartog · G. Lenzini

© Springer-Verlag 2007

Abstract In this paper we introduce a new frame-
work for controlling compliance to discretionary access
control policies [Cederquist et al. in Proceedings of the
International Workshop on Policies for Distributed Sys-
tems and Networks (POLICY), 2005; Corin et al. in
Proceedings of the IFIP Workshop on Formal Aspects in
Security and Trust (FAST), 2004]. The framework con-
sists of a simple policy language, modeling ownership
of data and administrative policies. Users can create
documents, and authorize others to process the docu-
ments. To control compliance to the document policies,
we define a formal audit procedure by which users may
be audited and asked to justify that an action was in com-
pliance with a policy. In this paper we focus on the imple-
mentation of our framework. We present a formal proof
system, which was only informally described in earlier

J. G. Cederquist
SQIG—IT, IST, Technical University of Lisbon,
Lisbon, Portugal
e-mail: jan.cederquist@ist.utl.pt

R. Corin · S. Etalle · J. I. den Hartog
Computer Science Department, University of Twente,
Twente, The Netherlands
e-mail: corin@cs.utwente.nl

S. Etalle
e-mail: etalle@cs.utwente.nl

J. I. den Hartog
e-mail: hartogj@cs.utwente.nl

M. A. C. Dekker (B)
Security Group, TNO ICT, Delft, The Netherlands
e-mail: marnix.dekker@tno.nl

G. Lenzini
Telematica Instituut, Enschede, The Netherlands
e-mail: gabriele.lenzini@telin.nl

work. We derive an important tractability result (a cut-
elimination theorem), and we use this result to imple-
ment a proof-finder, a key component in this framework.
We argue that in a number of settings, such as collabo-
rative work environments, where a small group of users
create and manage document in a decentralized way, our
framework is a more flexible approach for controlling
the compliance to policies.

Keywords Access control · Audit · Policy · Privacy

1 Introduction

The problem of policy enforcement, i.e., of guaranteeing
that data is used and transmitted according to a prede-
fined information flow policy, is present in all situations
where IT systems are used to process confidential data.
While this is a universal problem, in different settings
this influences the architecture of an IT system differ-
ently. In general, the higher the degree of assurance
required, the more inflexible is the system enforcing it.
For instance, in military settings, where secrecy needs
to be guaranteed at all costs, users are willing to use a
rigid access control system to enforce (mandatory) data-
usage policies. On the other hand, for medical appli-
cations [38] more flexible systems are needed which
guarantee privacy of patients without interfering with
the availability of data, by allowing users to override
mandatory policy [24,31]. At the other end of the scale
one finds collaborative work environments where even
more flexibility is demanded, and, as a consequence,
discretionary access control systems are prevalently
deployed.

J. G. Cederquist et al.

Consider the following example set in such an envi-
ronment: Alice creates a document, and she gives Bob
the policy “This may be seen and modified only by
employees”. Bob, subsequently, adds extra information
to the document, making it more confidential, and sends
it to Alice and Charlie with the (more restrictive) pol-
icy “This may be seen and modified only by seniors”.
Now Charlie, who is a senior, needs to urgently check
some charts in the document with someone who is not
a senior; he would like to be able to infringe the policy,
while taking the responsibility for the infringement.

This example, though very simple, highlights the
essential features of collaborative environments. First,
there is no central administration point which issues
and enforces policies. Second, it is difficult to determine
which is the policy that applies to a given document:
when Alice creates d and gives Bob the policy φ (that,
for example, allows Bob to read d) Bob has no way of
checking that φ is the ‘right’ policy for d. For instance,
Alice could have created an empty document and pasted
a secret document into it, for which she could not autho-
rize Bob. Bob can only trust Alices word on it. Third,
in a collaborative environment with discretionary pol-
icies [18], users are administrators themselves, and it
becomes important to be able to express administra-
tive policies, stating i.e., who may authorize other users.
Fourth, the policies are created by multiple users and
they are therefore often underspecified, incoherent, etc.
Especially, when the scenario presents rapid changes,
there is no time to re-align all applicable policies. To
avoid blocking business progression because of policy
specification problems, one must be able to infringe pol-
icies, while taking the responsibility for it.

Standard techniques for protecting documents
include Access Control [18] and Digital Rights Manage-
ment (DRM) [41]. In access control and digital rights
management systems documents are stored or processed
in some controlled environment (e.g., a database or a
special device). A general problem of mandatory access
control and DRM is that only a few central users can
issue policies, and that users do not own the documents
that they create, if they can create documents at all. A
more flexible approach is discretionary access control,
where users can create documents and subsequently
issue authorizations about these to other users. Discre-
tionary access control (e.g. present in Windows and Unix
filesystems) is used pervasively in collaborative work
environments. However, there is a well-known prob-
lem with discretionary access control: a user can always
take a document owned by himself, copy a confidential
document into it, and claim it as his own. To solve this
problem, Trust-Management (TM) systems have been
developed [8], where it is the user who is supposed to

infer whether the issuer of the authorization can be
trusted. This seems relatively easy in a DRM setting
(say to check whether a license is issued by the right
film studio). However, in a collaborative work environ-
ment judging the genuineness of an authorization for a
document is much harder than it seems, because of the
variety of the possible sources and the complexity of the
situation. At the same time, legislation demands com-
pliance to policies, and accountability with regard to the
disclosures of confidential documents [37,38,40].

In an attempt to solve this problem, we take a differ-
ent approach, which we call audit-based compliance con-
trol. The most eye-catching element of our framework
is the fact that policies are not enforced a priori, but
checked a posteriori. We should stress here that our
framework can not replace all a priori access control
systems in an organization, rather it is a way of con-
trolling compliance of users in a closed setting. This is
done for two different reasons: first, it yields a more
flexible system for the users; second, when using dis-
cretionary access control it is already necessary to audit
the user actions to verify the users’ compliance. Basi-
cally, we assume the presence of an auditing author-
ity with the task and the ability to observe the critical
actions of the users. This assumption requires that users
are somehow operating within a circumscribed envi-
ronment. We assume also that this environment allows
the user to keep a secure log of their actions and cir-
cumstances, to prove favorable facts to the auditors.
Assuming the presence of such an environment is not
unreasonable: employees in companies are usually oper-
ating from especially prepared terminals, where logging
systems are present. This is done both to detect flaws
and fraud, as well as to comply with legislation [37,38].

While the fact that compliance checking is done a
posteriori is superficially the most striking element of
our framework, there are a number of other ingredients
which should not be overlooked and, in our opinion,
form in itself a worthwhile contribution. In particular,
we present a basic policy language, based on first-order
predicate logic, together with a formal proof system,
that is specifically tailored for the audit-based system.1

In particular, the language allows users to express and
refine administrative policies, and to refer to conditions
and obligations. Importantly, despite the expressiveness
of the language we demonstrate here that the proof sys-
tem is also tractable.

Finally, a feature of our system worth stressing is that
users, instead of having to check whether the policy they

1 First-order logic is more expressive than for example Datalog
or some XML-based languages, which have been used in existing
access control frameworks (see the Sect. 7 on related work).

Audit-based compliance control

have received is actually the right policy for a given piece
of data, only have to check that the source is account-
able. This is very different from what is usually done
in, for instance, Trust-Management [8] or other distrib-
uted access control [2] frameworks, where the receiver
of content or a policy must make some kind of trust cal-
culation. Like in the example above, when it does turn
out that Alice was not an authority on the document nor
the real creator of the document, then Bob knows that
the auditor will put the blame on her.
Contribution of this paper This paper is based on ear-
lier work [9,11]. In earlier work we defined the policy
language, its (informal) semantics, the logging mecha-
nism and the audit procedure. We report briefly on these
definitions here. In this paper we look at the implemen-
tation of this framework—first by giving a formal proof
system, and its implementation in an implementation,
secondly, by showing how the framework can be used
in a common practical setting: protecting confidential
documents in a consultancy firm.

For the proof system we prove the cut-elimination
theorem. Although derivation systems exist for most
standard logics which satisfy this theorem, it was not
clear whether such a derivation system existed also for
our logic. The main problem here is the presence of a
special connective maysay, and its special logical rules,
which is used to express administrative policies. The cut-
elimination theorem is important since it shows that the
logic is consistent. Moreover, due to this result a more
efficient proof search is possible.

The rest of this paper is organized as follows: In the
next section the overall framework is described briefly.
In Sect. 3 some basic definitions of our framework [9,
11] are reported and in Sect. 4 its formal proof system
is presented. The full model is applied to a particular
scenario in Sect. 5, and in Sect. 6 two automatic tools
are presented that implement key components of our
framework: the proof finder and the proof checker. The
implementation of the proof finder uses the fact that the
cut-elimination theorem holds for our logic. Appendix
contains the proof of the cut-elimination theorem for
the proof system. Sections 7 and 8 contain related work
and our main conclusions.

2 In a nutshell

In our framework, compliance of users to policies is
checked a posteriori. This approach yields a more flex-
ible system for the users, but requires that users take
responsibility for their actions. The main assumptions
for this approach are summarized as follows:

Fig. 1 Sample deployment depicting actions, the logging and
interaction with an auditor

1. Auditors can observe critical actions. Hence there
must be a sufficiently comprehensive audit trail,
which cannot be forged or bypassed, containing the
relevant details about the actions and the identity
of the users executing them.

2. All the users of the system can be held accountable
for their actions. Hence it is required that users do
not vanish after joining the system.

Although these assumptions are not realistic in some
settings, this does apply to organizations such as compa-
nies and hospitals. This will be discussed further in the
Sects. 5 and 8.

Intuitively, the framework works as follows. Con-
sider the following example: Bob receives from Alice
the authorization φ to read a document d. Before read-
ing the d, Bob checks that Alice is an accountable user.
If this is the case, Bob can use Alice’s authorization.
This is a crucial difference with other approaches, such
as DRM, where before using the policy φ Bob would
have to check that φ is produced by an authority on d.
In our approach, Bob only has to check that Alice is
an accountable user. This gives Bob enough confidence
that if it turns out that Alice was not allowed to autho-
rize Bob, then Bob will be able to put the blame on
Alice. Because all the users are accountable, it is always
possible to trace the peer which introduced the wrong
authorization.

Figure 1 shows a sample run in the framework: In
the first step (I), agent a provides a policy φ to agent b
which b records in its log (II). Next (III) agent b reads
document d. For the moment, we make no assumption
on where the document d may be stored. At a later

J. G. Cederquist et al.

point the auditing authority, which is checking access to
sensitive files, finds the access of b (IV) and requests
b to justify this access (V). In response, b shows that
the access was allowed according to the policy φ which
was provided by a. The auditor, initially unaware of a’s
involvement, can now (VI) audit a for having provided
the policy φ to b.

For reasons of privacy, it is left to the individual agents
to justify their actions, and to find the proofs. The audi-
tor only checks the justification proofs, and the parts of
the logs that are needed to support the proofs, while
parts of the logs of the agents can remain confidential.
In settings where the auditor is trusted, proofs may be
generated by the auditor from the logs of the agents, to
reduce the unjustified actions in the evidence trace.

3 The framework

In this section the basic definitions of our framework
[9,11] are reported. The section is organized as follows.
We discuss the policy language used in the audit frame-
work and we describe the logging mechanism, which is
used by the agents to provide evidence for the justifica-
tion proofs. In the end we come to the formal definition
of auditing and accountability.

3.1 Policy language

In our framework we use a simple policy language, which
is in some respects similar to the languages used in
Binder [12] and PCA [3]. We will return to the main
differences in Sect. 7.
Basic permissions for actions are expressed using
atomic predicates. The objects of these predicates are
agents and data. We have a set AG = {a, b, c, . . .} of
agents and a set DO = {d, e, f . . . } of data objects. For
example the predicate mayRead(a, d) expresses that
agent a has permission to read data d. Additionally,
atomic predicates are used to express basic conditions
or facts, e.g. isEmployee(a) expresses the fact that agent
a is an employee.

Actions are represented by a set AC, containing

• create(a, d), expressing a has created data d,
• comm(a, b,φ), expressing a communication of a pol-

icy φ from agent a to b,
• scenario-specific actions like read(a, d), write(a, d),

etc.

We make a distinction between actions and instantia-
tions of actions. Different instances of an action are dis-
tinguished using a unique identifier id, as in createsid(a, d).

Formally this gives a set AC∗ ∈ N → AC of action
instantiations.

The grammar for the policy language is based on the
grammar for first-order logic formulas.

Definition 1 (Policy grammar) Let si be agents or data
and act an action, the set PO of policies, ranged over by
φ is defined by the following grammar:

φ ::= p(s1, ..., sn)

| maySay(a, b,φ)

| owns(a, d)

| � | φ ∧ φ | ∀x.φ | φ → φ | ξ → φ

ξ ::=!act |?act

where ξ are called obligations.

The maySay() construct is used to express administra-
tive policy. The policy
maySay(a, b,φ)means that a is authorized to say φ to b.
This type of policy is known as an administrative policy.
We are not aware of existing proposals that use this type
construct. This is due to the fact that in existing propos-
als, instead of modeling who may say a statement, the
receiver of a statement must decide whether or not to
trust it (see the Sect. 7 for more details).

The predicate owns() has the usual meaning, which
stems from discretionary access control models [18].
When an agent is the owner of a piece of data then
it can derive policy formulae about that piece of data,
and communicate any policy about the data to other
agents. This notion is pervasive in privacy legislation and
is central for example in Originator Controlled Access
Control (ORCON) [27]. In our framework instances of
owns() behaves like falsity in ordinary logics (see the
end of Sect. 4).

Central in our framework is the notion of refinement
of administrative policies. Basically, if an agent is autho-
rized to say a certain policy, then it is also (implicitly)
authorized to say a weaker policy. This allows for a flex-
ible delegation of policies. We would like to mention
that, though less explicitly, this notion of refinement is
mentioned in some other proposals [20,26].

The operators for negation, disjunction and existen-
tial quantification are not included in the grammar. This
is done for the sake of simplicity. The conjunction ∧ and
the universal quantification ∀ have their usual meaning.
Implication →, can be used in two ways: first, φ → ψ ,
has a policy φ as a condition, stating that a proof of φ is
needed to obtain the permission ψ ; secondly, ξ → φ, is
used to express obligations; finally, the annotations ! and
? indicate use-once and use-many obligation, respec-
tively. When a user fulfills a use-many obligation of a

Audit-based compliance control

policy, then the policy applies to any number of actions.
Fulfilling a use-once obligation, however, only allows a
single action. The logging mechanism, reported below,
and a type of linear logic, to be defined in Sect. 3, are
used to implement the use-once obligations. Consider
the following example: suppose that a user a receives a
policy ! pay(a, 1$) → mayViewVideo(a, d). This means
that a is allowed to view the video once, for each time
he logs a payment of 1$.

Remark 1 Most access control systems can be modeled
using logics [2]. From that point of view, authorizations
are (security) predicates, and the access control deci-
sion that grants access is a proof of a predicate that
allows the access. Even though the formal semantics of
such models is not always straightforward [2], logics can
be useful to analyze properties such as decidability and
consistency. In all cases, the decidability of policy lan-
guages is an important issue for the practicality of the
system [2,17,22].

There are a few systems that use policy logics that are
in principle undecidable [3,6]. Our framework uses first-
order logics, which is semi-decidable, while most systems
use decidable logics [4,6,8,12,16,17,21,22]. This type of
undecidability is not a problem in our setting where the
users (not the access granting authority) are responsible
for finding the proofs. The proof of cut-elimination (see
Sect. 6) shows that our logic is semi-decidable, allowing
us to implement a proof finder that eventually finds a
proof if there is any.

Remark 2 (Concerning obligations) In other access con-
trol sytems, obligations are call-back functions that have
to be executed by the access control mechanism before
access can be granted [20,26]. In our approach, obliga-
tions are actions that have to be performed by the user.
This is similar to the approach followed in the UCON
framework [28]. Post-obligations, obligations to be ful-
filled later on, are hard to implement when using a pri-
ori access control, because a separate audit mechanism
would be needed to check if promises have expired or if
they were fulfilled. In our framework, because an audit
mechanism is already used, post-obligations are straight-
forward to implement.

3.2 Proof obligation and conclusion

In our framework, the proof obligation function and
the conclusion derivation functions, define the explicit
link between policies and actions. These are public func-
tions which are known to all users. Basically, this ensures
that all the users are aware of the meaning of the basic
permissions. A straightforward way to implement this

would be to use a central trusted authority that provides
them to all users.

• The proof obligation function describes which policy
an agent needs to satisfy in order to justify the exe-
cution of an action.

pro : (AC × AG) → PO

• The conclusion derivation function, describes what
policy an agent can conclude from the evidence of
an action that occurred.

concl : (AC × AG) → PO

For the default actions, create(a, d) and comm(a, b,φ),
we have

pro(create(a, d), b) = � (1)

pro(comm(a, b,φ), a) = maySay(a, b,φ) (2)

pro(comm(a, b,φ), c) = � (a �= c) (3)

concl(create(a, d), a) = owns(a, d) (4)

concl(create(a, d), b) = � (b �= a) (5)

concl(comm(a, b,φ), b) = φ (6)

concl(comm(a, b,φ), c) = � (c �= b). (7)

This can be explained intuitively as follows: (1) agents
do not need permissions for creating data; (2) in a com-
munication, the source agent needs an authorization to
say a policy; (3) other agents do not; (4) an agent who
creates data can conclude that it is the owner of the
data; (5) other agents cannot conclude anything from a
creation action. (6) the target agent in a communication
can conclude the corresponding policy; (7) other agents
cannot conclude anything from a communication.

3.3 Logging actions

In our framework agents execute actions and they may
need to justify them later on. We assume that agents
have a basic logging device at their disposal for stor-
ing securely favorable facts, for example of the circum-
stances under which they perform actions, and evidences
of actions that they or other agents have performed. We
model this logging device by the following basic defini-
tion:

Definition 2 A logged action is a triple lac=〈actid,Γ ,∆〉
consisting of an action actid ∈ AC∗, a set of factsΓ ⊆ PO
(the conditions), and a set of action instances ∆ ⊂ AC∗
(the ‘use-once obligations’).

The log of an agent a is a list of logged actions.

J. G. Cederquist et al.

It is the choice of the agent whether or not to log an
action. It is only important that individual log entries can
not be forged or modified later on. For example, it can
be favorable to log the conditions under which an action
was performed, or to log a communication of a policy
from another agent to demonstrate that a subsequent
action was allowed. Additionally, an agent can log the
actions that it performs itself, including related condi-
tions, i.e., facts about the current situation that the log-
ging devices certifies to be valid, the time, the location,
or the type of computer the agent uses to execute the
action. We do not model this explicitly, but we assume
that the agent obtains a secure package of facts from its
logging device, represented by Γ . As an aside, note that,
to deal more efficiently with facts that remain true all
the time, one could also have a set of global facts which
then do not have to be included in each logged action.

The list ∆ indicates the use-once obligations that the
agent consumes. The list∆ refers to instances of actions
that the agent did or promises to do, related to the action.
We abstract away from the details of expressing prom-
ises, and instead assume that we have a way to check
if promises have expired. For example, if a policy states
that the agent may modify a document provided it noti-
fies someone within a day, then the agent must create a
future reference to a notification action and fulfill this
obligation within a day.

To prevent that logged actions are forged, the logging
device must be somehow tamper-resistant. The logging
device should protect some basic consistency properties
of its log:

• An agent can log the same action at most once, i.e.,
there cannot be two different logged actions
〈actid,Γ ,∆〉 and 〈actid,Γ ′,∆′〉 in the log for the same
action actid.

• An action can only be used one time as a use-once
obligation, i.e., an action actid may not occur in the
obligations ∆ of two different logged actions in the
log.

Now, we introduce the concept of system. To this end,
the following definition of system state is needed.

Definition 3 A system state is a collection S of logs of
the different agents, i.e., a mapping from agents to lists
of logged actions S : AG → AC∗. We denote by P(S)
the collection of all states.

The system model is defined as a labeled transition
system:

Definition 4 A system is a tuple 〈P(S), L , →〉, where
P(S) is the set of all states as introduced in Definition 3,

L = AC∗ × P(AG) is the transition labels consisting
of an action and a set of agents that log that action, and

→ ⊆ P(S)× L × P(S)

is the transition relation. We use the notation S
act,L−−−→ S′

for (S, (act, L), S′) ∈ →.
A transition models an action happening in the system

and being logged by some agents observing the action.
Thus we have

S
act,L−−−→ S′

when L is a subset of AG and act ∈ AC∗. The full state
S can be decomposed in substates for individual agents.
The state of agent a is denoted S(a).

Given the above transition between S and S′, S′(a) =
S(a) if a /∈ L and S′(A) = S(A).act if a ∈ L where act is
a log of action act by agent a. In other words, S′ is the
same as S except that act has been logged by the agents
in L. S0 ∈ P(S) is the initial state in which all logs are
empty.

An execution of the system consists of a sequence of
transitions

S0
act1,L1−−−−→ · · · actn,Ln−−−−→ Sn,

starting with the (empty) initial state S0. The execution
trace (tr) for this execution is act1, . . . , actn. In a state S
the log S(a) of an agent a can also be seen as a trace
of actions (by ignoring the conditions and obligations
logged with the actions). As a’s log is initially empty and
a can only log actions that actually occur, a’s log is a
sub-trace of the execution trace, i.e., we have Sn(a) tr,
where denotes the sub-trace relation (tr1 tr2 iff
tr1 can be obtained from tr2 by leaving out actions but
maintaining the order of the remaining actions).

3.4 Audits

Agents may be audited by some auditing authority, at
some point in the execution of the system. This author-
ity will audit the agent to find out whether the agent is
able to account for the actions it initiated.

Before going into the details of how this can be imple-
mented, we fix some notations. The knowledge of the
auditing authority is represented by an evidence trace E
which is a sub-trace of the execution of the system (up
till now). Which actions are in E depends on the power
(and possibly the interests) of the authority; a more pow-
erful authority will in general be able to collect a larger
evidence trace. When an auditor audits agents, using
an evidence trace, agents are asked to account for the
actions they performed in the evidence trace by provid-
ing valid proofs for them. If an action was logged by her,

Audit-based compliance control

then it can use the conditions or fulfilled obligations,
logged with the action, in the proof. If the agent did
not log the action it will have to provide a proof which
does not depend on conditions or fulfilled obligations.
This shows why it can be advantageous for agents to log
actions.

Definition 5 (Accountability) We say that an agent a
correctly accounts for an action act if it provides a valid
proof of

Γ1;Γ2;∆ �a pro(act, a),

i.e., a proof by a of pro(act, a) from the assumptions
Γ1, Γ2 and ∆, where Γ2 consists of actions logged by a,
and Γ1 and∆ are the conditions and obligations2 logged
with the action act. How Γ1;Γ2;∆ �a pro(act, a) can be
derived is made precise in Sect. 4.

The new actions revealed by the proof are the actions
in Γ2 and ∆ which are not already in the evidence
trace E .

We say an agent a passes the audit (or accountability
test) E , written ACC(a, E), if it correctly accounts for all
actions in E and for all actions revealed by the proofs
that it provides.

In providing a proof of accountability for an action,
the agent may reveal actions that were not yet known
to the auditing authority. These actions may be added
to the actions to be audited i.e., the evidence trace.
Clearly, it is also possible to have an authority which
iteratively audits all agents involved in actions in the
evidence trace. In this case newly revealed actions may
require the authority to revisit agents or add new agents
to its list. (However, as the number of actions to be
audited is always limited by the number of actions exe-
cuted in the system we know the process will still termi-
nate.)
Honest strategy A safe strategy for an agent a to be
able to pass any audit is to derive the proof obliga-
tion pro(act, a), before executing an action act. If the
proof needs conditions or obligations, then a must log
the action act with these conditions and obligations.

Theorem 1 (Accountability of honest agents) Corin
et al. [9] If agent a follows the honest strategy, then for
any system execution and any auditing authority with evi-
dence trace E , we have that ACC(a, E) holds.

For the sake of simplicity we have assumed that the
agents must produce all the justification proofs, when

2 The obligations are labeled actions rather than actions. Thus to
be precise we should say that ∆ is the list obtained by removing
the labels from the actions in the list of obligations.

auditors ask for them. Nevertheless, variations are
possible: for instance, in a different form of our sys-
tem, the burden of producing the proofs may be left
to the auditors. In another variation, the user may be
required to log the proof (when possible, together with
the action). Finally, when the auditor is trusted by the
agents, they can submit (part of) their logs to the audi-
tors. In this case, the auditor can single out the actions
that cannot be justified, and ask only for those actions
for a justification by the agent. In any case, finding a
proof may be expensive and difficult. Tools that auto-
mate the process of finding proofs, and replying to audits
automatically are important here. An implementation of
such a tool is described in Sect. 6.

The way the auditor collects an evidence trace, and
how misbehavior can be observed by the auditor, has
been left unspecified. This collection of evidence
involves techniques outside the scope of this paper. In
simple cases an auditor can have a database log at his dis-
posal, and it is sufficient to single out the sensitive tables
from the log and start asking for justifications. In more
complex scenarios one needs techniques like forensic
watermark analysis [39], or do an anomaly detection on
sets of system calls. In our framework, the proof obliga-
tion function for creating a document yields the trivial
policy. Auditing which kind of documents are introduced
to the system is still needed however, either by review-
ing modification or creation off documents by users. It
should be prevented that Alice creates who owns a doc-
ument, pastes some secret data d into it, in order to
bypass security policy for d. This is a general problem of
discretionary access control systems [18].

4 Proof system

We now present a proof system for the logic described
informally in Sect. 3. We should mention that this sys-
tem is different from the one we outlined in [9], that for
instance is not intuitionistic, nor is it clear whether it is
tractable.

The logic here is formalized as an intuitionistic logic
using sequent calculus. We believe that in our frame-
work, where the authority may inquire several agents
during auditing, the use of constructive proofs makes
it easier for the authority keep track of the chains of
responsibilities. A proof by contradiction of the policy
there exists an agent who told me that I am allowed to …
for instance would not tell the authority which agent’s
authorization the user is using.

There are two reasons for using sequent calculus for
the formalization. First, the sequent calculus uses a nota-
tion that is explicit about which assumptions are used at

J. G. Cederquist et al.

Fig. 2 The proof system used
in the tools

which step in the proof. This is convenient because the
agents may use different assumptions. Below we use
the (sequent) notation Γ �a φ to indicate that agent a
can prove φ by using the assumptions in Γ . The second
reason is more practical: proof search in sequent calculi
can be done almost entirely by a simple backtracking
search. In fact we have implemented a proof finder in
Prolog in a straightforward way (see Sect. 6.2).

The proof system is shown in Fig. 2. As earlier, φ and
ψ denote policies, while α denotes an action. Sequents
have the form Γ1;Γ2;∆ �a φ, where a is the agent doing
the reasoning, and Γ1, Γ2 and∆ are three different con-
texts. The context Γ1 is a list of policies. The context Γ2
is a list of actions from the agent’s log, which are used to
derive conclusions using the conclusion derivation func-
tion concl, or as use-once obligations. Finally, the context
∆ is a linear3 context, which is used to model use-once
obligations obligs. The empty context is denoted ν. To
keep the notation as simple as possible, when a context
is the same in the conclusion as in the premises, it is left
out from the rule. Thus, instead of writing

Γ1;Γ2;∆ �a φ Γ1;Γ2;∆′ �a ψ

Γ1;Γ2;∆,∆′ �a (φ ∧ ψ) ∧R

we write

; ;∆ �a φ ; ;∆′ �a ψ

; ;∆,∆′ �a (φ ∧ ψ) ∧R.

The first ten rules in the proof system are standard
rules for �, initialization, cut and, left and right rules for
conjunction, implication and universal quantification.

3 In linear logic assumptions are used exactly once, while our logic
allows weakening. It would be more exact to say that∆ is an affine
context.

The next four rules are the implication left and right
rules for the use-one and use-many obligations. There
are the two contraction rules (C-L1 and C-L2) for the
two non-linear contexts. The final three rules, refine,
owns-L and concl, do not occur in the usual logical sys-
tems. They are needed to deal with the special constructs
of the policy language. In the conclusion of the refine
rule, the formula maySay(b, c,Γ1) is used as an abbre-
viation for list of policies maySay(b, c,φ) with φ ∈ Γ1.
In addition to the rules shown in Fig. 2, there are also
permutation rules, one for each context.

Let us now discuss the refine rule in greater detail:
the action contexts, in the premise are empty, because
(in our framework) refinements should not depend on
local facts. Consider for example an agent a who can
derive two unrelated permissions φ andψ , together with
the authorization to communicate φ: maySay(a, b,φ).
Locally, given that ψ holds, also φ → ψ holds, despite
the fact that φ and ψ are completely unrelated.
Therefore we must require that maySay(a, b,φ) →
maySay(a, b,ψ) holds only when φ → ψ is a tautology
(i.e., holds for everyone).

In our logic, as mentioned in Sect. 3, if an agent can
derive a certain policy, it does not necessarily mean that
it can communicate that policy to other agents. The pres-
ence of the free contexts Γ ′,Γ2 and ∆ is just to allow
for weakening,4 which would not be a derivable rule
otherwise.

In the owns-L rule the function data() maps a policy
to the data it concerns. Using the owns-L rule, if an agent
owns a piece of data, then it can derive whatever policy

4 Weakening says that, if a certain property φ can be derived from
the assumptions Γ , then φ can also be derived from Γ ,ψ .

Audit-based compliance control

it likes that concernes (only) that data. Consequently,
if all agents own all data, then everything is derivable.
Thus, the formula ∀a, d. owns(a, d) behaves as falsity.5

We return to the owns-L rule for a discussion about
implementation issues in Sect. 6.2, where we show that
it is sufficient to define data() only for the atomic poli-
cies.

5 Example

In this section, to show how our approach works in
practice, we give the details of a particular scenario.
Employees of a consultancy firm exchange documents
and policies from customers. We keep the example very
simple on purpose. Although our framework can be used
in complex practical settings, since the policy language
is expressive and the proof system tractable, we believe
that it is more interesting to show the main features of
our framework by a simple example.

5.1 General setting

At TNO ICT, a research and consultancy firm employ-
ees work regularly with confidential data from custom-
ers. The firm and the employees of the firm are trusted
to treat the data with care, and to protect data from
illegitimate access.

The firm stores and processes a large amount of docu-
ments regarding customers and the projects assigned by
them. In contracts, customers specify how their data can
be used: informally, they specify usage policies. Typically,
customers allow access to their data only on a need-to-
know basis, and they require data to be accessed in some
secure way. In addition to these usage policies, the firm
may specify additional policies, for example to avoid a
conflict of interest.

TNO ICT has offices located at various sites, and each
site hosts a regular filesystem to store user documents.
For example, at one site, with 300 employees, the stor-
age contains 1.5 million files, in about 120,000 folders.
Several employees (more than half) have administrative
rights, i.e., they manage who may access files or fold-
ers. A project folder is maintained and managed by a
project manager who decides which employees may be
granted access to the folder. Subfolders of the project
folder are used to group data, possibly under different

5 Garg and Pfenning [15] do not include falsity in their authori-
zation logic, arguing that it is unnecessary and that it would only
yield misleading policies. In our setting, a kind of falsity (owner-
ship of data) is needed, and consequently negation, because we
model discretionary policy.

access policy. For example, there is usually a folder with
evaluations of individual employees, which is only acces-
sible to managers. It is safe to say that the filesystem
contains no top-secret data, nor public data, basically
because the firm uses separate systems for those. Top-
secret data like documents from banks require special
care and clearance, and are stored on designated sys-
tems. Public data like finished surveys and reports with
public information are stored in a kind of internal library
accessible to anyone in the firm. In the rest of this section
we assume that TNO ICT (internally) audits the com-
pliance of employees, by using our framework, instead
of using a more traditional access control mechanism.

Employees use simple terminals (computers or lap-
tops) to access the file system. Activity on the terminals
is monitored. The employees cannot turn this monitor-
ing off (not having root privileges on their terminals).
The data from the activity monitor includes access to the
above-mentioned file storage, so auditors can check the
compliance of employees to the various usage policies.
We assume that employees use digitally signed emails to
communicate policies to each other. It is not necessary
for the auditors to know exactly which policies are being
emailed by employees, because (as in Fig. 1) when a pol-
icy is used by an agent, the auditors will find out about
it during audits. In the rest of this section we outline
the features of our system in a few sample runs. In the
next section we discuss the tools, for the auditors and the
audited employees, to automate the audit procedure.

5.2 Snapshots

We give four different examples of policies and proofs.
We highlight the use of administrative policies and the
logging device.

To represent the users of the system we use the fic-
tional employees Angela (a), Benny (b) and Cristophe
(c). The data that needs protection are the documents
d1, d2, d3, etc. We use x to denote an agent variable.

The policy grammar is as before, including the sce-
nario-specific predicates mayRead(a, d), mayWrite(a, d)
and isUsingV4(a), where a denotes an agent and d data.
The first two are predicates about a piece of data
(cf. Sect. 4). The function data() is defined by data
(mayRead(a, d)) = {d}, and data(mayWrite(a, d)) = {d}.
The proof obligation and the conclusion derivation func-
tion are as reported in Sect. 3, and additionally for
reading and writing a document the proof obligation
is mayRead() and mayWrite(), respectively.

Now, a typical work flow is as follows. a customer
gives a consultancy or research assignment to the firm. A
contract containing, among other things, informal usage
policies for the data related to the project is signed. The

J. G. Cederquist et al.

account manager delegates the project to a project man-
ager. The project manager must ensure that the usage
policies specified in the contract are not violated.

Example 1 (Administrative policies) As mentioned
earlier, the size of the file storage, and the number of
different usage policies and documents, makes a central
approach to administration problematic. By giving users
administrative rights over documents and folders, they
can work more autonomously. Administrative policies
are needed to specify which authorizations can be issued
or delegated by which users.

Angela is responsible for the authorizations regard-
ing the documents in the folder for project PR. She must
authorize other employees, to get the work done, while
observing the firm’s and the customer’s policy. Techni-
cally, Angela is the owner of data in PR because she
created (introduced) the files onto the filesystem. She
has logged the following action:

[act1] create(a, d1).

Angela can now derive owns(a, d1), but also any other
policy about d1. For example, this action gives Angela
the authority to authorize other employees.

Cristophe works on a project PR. Angela can send
him the authorization to read d1. She can derive

maySay(a, c, mayRead(c, d1)).

This policy is an administrative policy for Alice, which
is the justification for the following action by Alice:

[act2] comm(a, c, mayRead(c, d1)).

Our implementation of the automatic proof checker
uses a convenient syntax for proofs. The proof of this
administrative policy, as output by our proof finder, is
given in Fig. 4. Actually, an arbitrary nesting of maySay()
constructs can be derived by Angela (see below in the
Example 3).

The action [act2] justifies Cristophe to read the docu-
ment employees. Later, an auditor may ask Cristophe a
justification for reading the document d1, so he logs this
communication for later.

Finally, when the auditor finds out that Angela is the
originator of the authorization, the creator of the data, it
may want to review the type of document created (and
thus owned) by Angela and whether she was justified
in creating d1. This review requires special techniques
which are out of the scope of this paper (see Sect. 3.4),
such as heuristics, watermarking or human review, for
example to establish whether d1 is related to the projects
Angela manages.

Example 2 (Refinement) Our framework allows
refinement of administrative policies. Basically, this

means that if users have the authorization to send pol-
icies to other users, then they may also send stricter
policies.

Suppose Benny is authorized to authorize Cristophe
to read document d2. He can derive the following policy:

maySay(b, c, mayRead(c, d2)).

This policy allows Benny to send the policy mayRead(c,
d2) to Cristophe. Benny wants to add an additional
condition, however, to ensure that Cristophe uses the
version 4 of some software: isUsingV4(c). In our frame-
work Benny can do this. Benny sends Cristophe a refined
policy:

[act3] comm(b, c, isUsingV4(c) → mayRead(c, d2)).

Basically,

� mayRead(c, d2)→(isUsingV4(c)→mayRead(c, d2)),

holds, i.e., it is a tautology. In our framework, this means
that

maySay(b, c, mayRead(c, d2))

→ maySay(b, c, isUsingV4(c) → mayRead(c, d2)).

Using the refine rule, Benny can derive the authoriza-
tion to communicate a refined policy.

Let us see how Cristophe can use this policy. Since
Cristophe may not always be using the right software,
when he accesses d2 he must log the favorable fact that
he is using the right version. He logs the action of reading
d2 as follows:

[act4] 〈read(c, d2), isUsingV4(c), 〉.
Later, Cristophe can use log entry [3], together with

[4] to prove (to an auditor) that he was allowed to read
d1:

[isUsingV4(c)]; [act3]; [] �b mayRead(c, d2).

Example 3 (Availability) As mentioned before, the
file storage is rather large, and there are several pol-
icies that change in time. It is likely that, especially
in unforeseen circumstances, the authorizations needed
are outdated, preventing employees from doing their
work. Auditing gives the flexibility to access documents,
despite that the proper authorizations have not yet been
given. We give an example.

Suppose that Angela has given Cristophe the autho-
rization to read documents of the project PR, like in
Example 1. On Friday, Cristophe finishes his work on
document d1, which needs to be delivered to the cus-
tomer by Monday. Unexpectedly, he decides to have the
junior employee Benny review some charts in the doc-
ument over the weekend, because Benny is an expert at

Audit-based compliance control

this. Benny has not been authorized by Angela to read
d1. Unfortunately, Angela has already left the office.
Cristophe knows Angela well and is sure she will agree.
Cristophe takes the responsibility of any sanctions, by
authorizing Benny himself. He performs the action:

[act5] comm(c, b, mayRead(b, d1)).

He writes Angela an email about this, asking her authori-
zation for this. Benny subsequently reads the document
d1:

[act6] read(b, d1).

At this point Benny can justify his action, by referring
to the authorization sent by Cristophe. Cristophe how-
ever did not have the authorization to authorize Benny.
When Angela comes back to office, she can authorize
Cristophe. From owns(a, d1), she can derive the policy:

maySay(a, c, maySay(c, b, mayRead(c, d1))).

which is the justification for the following communica-
tion:

[act7] comm(a, c, maySay(c, b, mayRead(b, d1))).

Now, when an auditor asks Cristophe for a justifica-
tion for [act5], Cristophe can use his log of [act7].

The last example shows the flexibility of the audit-
based approach. With a file system of thousands of files
and different authorizations and hundreds of employees
and changing projects, it is very likely that authorizations
are outdated or not appropriate. In our framework this
does not hinder the employees in any way. Policies can
be supplied on demand.

Example 4 (Use-once obligations) Use-once obliga-
tions can be used to enforce procedures, demanding that
users perform a certain action before or after performing
another. We give a simple example.

Angela decides to give Cristophe administrative
rights, in case he needs another review at a late hour.
The firm’s procedures however require that she can pro-
vide a list of employees who have had access to the
documents. She wants to receive a short email from
Cristophe, explaining the circumstances, for each time
Cristophe gives access to another employee.

Angela gives the following policy to Cristophe:

φ =notify(a) →
∀x. maySay(c, x, mayRead(x, d1)).

Her action is

[act7] comm(a, c,φ).

A later time, Cristophe needs Benny’s help again. He
notifies Angela, and he must keep the evidence of this
for later (he logs the action):

[act8] notify(a).

Now he authorizes Benny. This time he must log this
action, to indicate which use-once obligation he is using
up:

[act9]〈comm(c, b, mayRead(b, d1)), [act6]〉.
When the auditor asks Cristophe for a justification,
Cristophe can prove:

[]; [act7]; [act6] �c maySay(c, b, mayRead(b, d1)).

Cristophe cannot authorize anyone without notifying
Angela because the logging device does not permit him
to point twice to the same message. Basically, the sep-
arated linear context used in the proof system prevents
him from completing a second proof. Angela can be
sure that she gets an email each time another employee
accesses a project document.

6 Implementation

In this section we describe the implementation of the
two key components of our framework: the proof
checker to be used by the auditors in order to check
justification proofs and the proof finder to be used by
the agents in order to find compliance proofs.

6.1 The proof checker

Assume that an agent a has performed an action act
and that the auditing authority wants a to justify it (see
Fig. 3.) A possible scenario is the following: First, (i)
agent a is audited for action act. Agent a now selects
an excerpt ε of its log and a policy φ that is a’s proof
obligation for action act and (ii) tries to find a proof of
ε �a φ with the proof finder. Then (iii) the proof π and
the excerpt ε are sent to the auditor for checking (iv) and
finally, (v) the auditor checks that π is indeed a proof of
ε �a φ by using the proof checker (vi).

In our logic authorities should be able to check
whether compliance proofs are valid. To support this,
we formalized the inference rules of the proof system,
using the logical framework Twelf [30]. Twelf uses the
propositions-as-types correspondence, also called the
Curry–Howard isomorphism. Proof checking in Twelf
thus reduces to type-checking. Earlier research in proof-
carrying code has shown that Twelf uses a convenient
notation for proofs to be sent and checked by a recip-
ient [3,25,42]. Our notation can be seen in Fig. 4. The

J. G. Cederquist et al.

Fig. 3 The role of the tools in the event of an audit

implementation of the 20 inference rules in Twelf con-
sists of about 100 lines of code.

Let us now return to the owns-L rule, in the proof
system (Fig. 2). It is cumbersome to define (in Twelf)
the set of data data(φ) that the policy φ depends on.
Set-theory would be required to define data for com-
pound policies. However φ in the owns-L rule can be
restricted to atomic policies, provided we add the rule
owns-maysay:

Γ1, maySay(b, c, (owns(a, d))); ; �a maySay(b, c,ψ)
Γ1, owns(a, d); ; �a maySay(b, c,ψ)

.

It can be shown that the proof system obtained in this
way is sound and complete with respect to the one in
Fig. 2. Soundness follows since, owns-maysay is provable
using cut, the general form of owns-L and weakening.
Completeness can be shown by proving (the general)
owns-L, by case-analysis over φ. If φ is atomic, then
the restricted form of owns-L is applicable. If φ is of
the form maySay(b, c,ψ), then φ can be stripped using
owns-maysay and refine. If φ is of another compound
form, then φ can be stripped using other rules. In
owns-maysay, the formula on the right side of the entail-
ment relation �a is restricted to satisfy the sub-formula
property.

6.2 The proof finder

To respond to audits, an agent should be able to find
compliance proofs based on its log. To do this in an auto-
mated manner, we implemented a proof finder (auto-
matic theorem prover), using SWI-Prolog. While the
proof checker is an implementation of the inference
rules in Twelf. The proof finder consists of a represen-
tation of the inference rules in Prolog, together with
some modules for the generation of the proof in a for-
mat appropriate for the proof checker. There are about

400 lines of Prolog code. This implementation relies on
the cut-elimination theorem, proven for our logic.
Cut-elimination For the proof system presented here,
the cut rule is admissible, i.e., if a policy is derivable
using the cut rule then there is also a derivation of that
policy without cut. In words, this means that if a state-
ment is provable assuming a lemma, and the lemma is
provable, then the statement is provable directly. The
statement of the cut-elimination theorem is reported in
the Appendix. Although the cut-rule is admissible in
the sequent calculus formalization of first-order logics
[36], it is not trivial that this is the case also for our
logic, having introduced new logical rules to deal with
maySay() and owns(). The proof of the cut-elimination
theorem is included in the appendix. Cut-elimination
has two important consequences: First, the sub-formula
property6 is satisfied, allowing for a more efficient proof
search. Second, consistency of the logic is a consequence
of cut-admissibility.7

Prolog’s resolution (backtracking) algorithm is used
to perform proof search. In spite of cut-admissibility, the
proof finder does not always terminate. Our logic is an
extension of predicate logic, which is in general unde-
cidable, only certain fragments are decidable [13,17]. In
our framework, since proof finding is only done by the
agents, undecidability has no impact on the authority.
In many other access control frameworks it is important
that a decidable fragment of predicate logic is chosen,
to prevent that undecidability complicates security deci-
sions [22] (see the Sect. 7).

A sample proof output by the proof finder is reported
in Fig. 4. The proposition to be proven is written before
the ‘=’ sign. The proof is after the ‘=’ sign.

To compare the different formalizations we show in
Fig. 5 how the ∧ − L1 rule is written in the Twelf code
and in the Prolog code. In the Prolog code, the second
line in the ∧−L1 rule, is used to find a permutation of Γ1
such that φ1 ∧φ2 is on the first position. This replaces the
need for separate permutation rules in the proof finder
(see Fig. 2), which would be inefficient. When such a
permutation is found, then the context is permuted and
permutation steps are printed in the proof for the proof
checker. Because these permutation steps can become
lengthy, we abbreviate using lemma’s, that are available
at the proof checker, i.e., perm_g1_2 is the lemma which
takes the second element of Γ1 and puts it in the first

6 The formulas used in the premises are sub-formulas of those in
the conclusion.
7 Without the cut-rule, consistency normally follows, since there
is no other rule that can introduce falsity. For our logic, it is easy
to see that the formula (∀a, d. owns(a, d) cannot be introduced
without cut (except in some degenerated cases).

Audit-based compliance control

Fig. 4 A sample of the
output of the proof finder.
Here agent a derives an
administrative policy about
data d, using the fact that she
created the data

Fig. 5 The first and-left rule
in formal notation, in Twelf
code and in Prolog code

position. For the full source code of both tools, we refer
to our online demo [1].

The demonstrated proof finder is not a state-of-the-
art theorem prover, but it shows a possible approach to
implement our framework. A future possibility may be
to use lean theorem proving [7], which is particularly
fast at solving simple problems but slower for complex
logical problems.

7 Related work

Audit logs Logging and auditing have always been con-
sidered central in security, and in particular central to
a successful practical implementation of access control
[33]. Jajodia et al. discuss explicit requirements for
logging and auditing user actions on a database [19].
Logging and auditing is usually performed, not as a
replacement of, but in addition to an (a priori) access
control system. In addition, sometimes the access con-
trol system itself is audited for flaws or errors. An audit
of the access control mechanism can be sufficient when
it is certain that the mechanism cannot be turned off
between the audits. In our framework we focus on audit-
ing individual actions, and in principle we can assume
that the a priori access control system is turned off
completely, providing only basic authentication of users.
Audits are sometimes used to observe unauthorized
access, or the bypassing of access control mechanisms
[34]. Observing such misbehavior is a general problem,
which plays a role also in our setting. In our framework
it is particularly important that the audit trails cannot
be tampered with by users, and that it is hard for users
to prevent that crucial actions are being registered in
the audit trail [34]. Related to this problem is the issue
of implementing tamper-resistant hardware for DRM
settings [10] and forensic watermark detection [39].

Overriding Rissanen et al. [31] presented a method for
overriding the Privilege Calculus, a type of access con-
trol system. They focus on how to find suitable auditors
in a hierarchy of auditors, to justify each override. In
our framework on the other hand, we focus on the form
of the justifications and we do not assume any hierar-
chy of auditors. Rissanen et al. list a number of reasons
to use a more flexible mechanism than the traditional a
priori access control systems. Their main motivation is
that emergency situations cannot be encoded in policies.
We take a different approach by providing a way
(through the use of administrative policies) to change
the authorization of users to adapt to the new situ-
ation. In our framework, for example, a user can be
authorized to give authorizations to other users, a pos-
teriori, for example for actions during an emergency
situation. Also in a medical setting, Longstaff et al. [24]
give a high-level description (a UML model) of a med-
ical information system with the possibility to override
access control decisions. They focus on the conditions
under which an override is justified. In a different set-
ting, Shmatikov and Talcott audit users to discover the
violation of DRM licenses. They use a reputation system
to discourage bad behavior, and encourage good behav-
ior [35]. In our framework we do not make assumptions
about specific sanctions imposed by auditors, but in cer-
tain settings it may be an interesting future possibility to
combine our framework with the reputation system of
Shmatikov.
Logic in access control In our framework we use on
purpose a simple policy language based on first-order
logic, where first-order quantification allows to express
groups of objects and subjects. For the sake of simplicity
we did not go into the details of all practically useful
constructs, such as constructs regarding time, groups
of subjects, or objects. It has been shown, however,
that first-order logic supports most access control poli-
cies [17]. Unfortunately, first-order quantification is only
semidecidable, which means that there is a procedure

J. G. Cederquist et al.

that finds all the proofs of statements, but this pro-
cedure may not terminate when no proof exists. On
the other hand, it has been shown that this is not a
problem in the setting of proof-carrying authorization
(PCA) [3] (see below). An analysis of the expressivi-
ty of first-order logics was presented by Halpern and
Weismann who discuss in particular the practical use of
certain decidable subsets of first-order logics for access
control [17]. A number of access control frameworks
are based on Datalog, e.g., Delegation Logic [21], the
RT framework [23] and Binder [12]. It has been argued
however that Datalog has severe limitations and that a
more expressive language should be used instead [22].
Datalog with constraints has been used in the Cassan-
dra system to implement an Electronic Health Record
system. Theoretically, the policy language used in the
Cassandra system is undecidable [6]. For a more lengthy
discussion of the different aspects of logic-based access
control systems we refer the reader to a survey by Abadi
[2].

Many systems use the says construct, which models
the communication of a (security) statement between
users. In these proposals, the receiver, before conclud-
ing that the communicated statement is true, must check
some side-condition, such as whether the sender is
trusted, or an authority about such a statement. This
side-condition is absent in our framework, because in
our framework the agent who sends the policy remains
responsible for it. If a policy is used to justify an action,
auditors may find out about it, and they may ask the orig-
inal sender of the policy for a justification. The autho-
rization to communicate statements is expressed by the
maySay() construct. To the best of our knowledge we
are the first to use such a construct for the expression of
administrative policies, combined with the possibility of
refinement of administrative policies.
Proof checking and proof systems for access control
The proof system presented in this paper differs from
normal first-order logics in the use of the linear context
to model use-once obligations, the refinement rule and
the rule that allows any policy to follow from the owns
predicate. We do not use all the linear operators and
logical rules, because many constructions do not yield
useful policies. Independently, Garg et al. [14] have pre-
sented a similar system recently (here use-once obliga-
tions are referred to as consumable credentials). Garg
et al. wrongly claim to be the first to use linear logic in
this setting. Differently from us, they use all the opera-
tors and logical rules of linear logic, but they conjecture
that it is sufficient to use some subset of linear logic (like
we do).

The cut-elimination theorem presented in this paper,
shows that the logic is in a sense well-behaved: it is trac-

table and consistent. Independently, the same theorem,
for a different authorization logic, was used recently by
Garg and Pfenning [15]. Their logic is a constructive
sequent calculus (like ours) and they prove that the cut-
rule is admissible (like we do). Garg and Pfenning refer
to this as the non-interference property of the logic.
They discuss in detail the precise consequences of the
cut-elimination theorem in the setting of access control
systems.

BLF [42] is an implementation of a Proof-Carrying-
Code framework that uses both Binder and Twelf. In this
framework, developers of a program include a proof that
the program is safe, while consumers can check the proof
to get confidence about the program. This is based on
two ideas: first, that checking the correctness of a proof
is relatively easy, compared to finding one; second, that
finding the proof, that a program is safe, is easier for the
developer of the program than for arbitrary consumers
of the program. Like in our framework, the proofs are
written and checked using Twelf. In BLF, the proofs for
complex programs can become very lengthy. To solve
this, an alternative procedure was proposed, using only
hints from which the full proof can be derived, instead
of giving the full proof. Such a variation could be a pos-
sibility also for our framework.

More related to our auditing by means of proofs,
Appel and Felten [3] propose the Proof-Carrying
Authentication framework (PCA), also implemented in
Twelf. Their system is implemented as an access con-
trol system for web servers. Differently from our work,
PCA’s language is based on a higher order logic that
allows quantification over predicates. The disadvantage
of using higher-order logic is that proof search is in gen-
eral undecidable and that properties like consistency
must be proven separately for individual settings. In our
case, semi-decidability and consistency hold for all the
different practical implementations of the framework.
Access control A number of access control systems use
a language based on XML to express access control pol-
icies [20,26]. We do not use an explicit XML syntax here
because we are interested in the formal properties of our
logic, which are more easily shown when using logical
formulas and logics. To give an idea of the expressive-
ness of our language we compare our policies with those
used in XACML [26].

An XACML policy consists of a list of rules. Each
rule is a tuple of action, subject, object, condition and an
effect. The latter can be either permit, deny, indetermi-
nate, or not applicable, and behaves like an intermedi-
ate decision in the sense that this value may or may not
be, for example when overruled by another part of the
policy, the final outcome of the decision. Overruling a
positive decision is not possible in our framework: when

Audit-based compliance control

a policy allows an action then this is always final. In our
framework, if no policy applies access is always denied.
The decision values negation and not applicable coin-
cide in our framework. The first three elements of the
tuple are in our logic contained in the action expressions.
Conditions are expressed using logical implication →.
The maySay predicate can not yet be translated to an
XACML policy, but apparently the version 3 of XA-
CML will allow the expression of administrative policy.
XrML [41], a rights language designed for DRM, is sim-
ilar to XACML, except that in XrML some form of
administrative policy is possible; an XrML license may
contain a special flag allowing the further distribution of
the same license. Our maySay()-construct, and the pos-
sibility of nesting of the maySay()-construct, is basically
a refined form of this distribution flag: in our framework
one must explicitly specify all the sender and receiver
pairs, in the maySay predicate, along a delegation chain.
Bandman et al. [5] define a type of cascaded administra-
tive policies, using regular expressions to constrain the
users that can receive them. The maySay() construct
allows to express similar policies, although we use first-
order predicates instead of regular expressions.

Our definition of logging distinguishes between con-
ditions and obligations. Our choice was inspired by
Sandhu and Park’s UCON model [28], in which the
decision is modeled as a reference monitor that checks
the three components: ACL, Conditions and Obliga-
tions. Differently than in the UCON model, we do not
assume a security monitor, to check that these condi-
tions are valid, but a logging device to certify conditions.
UCON’s post- and pre-obligations are supported in our
framework, but ongoing obligations would require a spe-
cial construction. Obligations are used with a different
meaning in E-P3P [20] and in XACML [26]. In these
frameworks, obligations are call-back functions that are
executed by the access control mechanism at the time a
request is evaluated. In our framework there is no cen-
tral security monitor that evaluates access requests, but
obligations are actions to be performed by the agents
requesting access.

8 Conclusions

In this paper we have extended our earlier work on
a framework called Audit-based Compliance Control.
Our framework is targeted at collaborative work envi-
ronments, where a small group of users exchange, mod-
ify and refine a large number of documents and policies.

Previously we presented the basic definitions and
architecture of our framework [9,11]. In our frame-
work we assume that no security monitor is present to

prevent unauthorized actions, but that critical actions
are monitored and that users can be asked to justify
their actions, a posteriori. Our framework uses a sim-
ple, but expressive, policy language based on first-order
logics, extended with an owns predicate and a maySay
predicate. In this paper we focus on the implementation
of the logic, by presenting a formal proof system under-
lying the descriptions in earlier work. To show how our
framework can be used in practice we have discussed
a particular, and common, scenario: employees of a
consultancy firm, processing various confidential doc-
uments. We have also shown that our proof system is
tractable (by proving the cut-elimination theorem), and
we have used this result to demonstrate a proof finder
for our logic, using Prolog.

To the best of our knowledge, the framework pre-
sented here is the first to describe a logic for (adminis-
trative) policies combined with a posteriori compliance
checks of performed actions. Checking authorizations
of users after the access yields a flexible system, and
avoids the usual costs of unavailability due to flawed or
outdated policies. Take for example, a consultancy firm
with a central database of customer data to allow collab-
oration across the firm, or a hospital where medical data
are stored online for fast access. In both settings confi-
dentiality is required to protect the privacy of the firm’s
customers, or the patients. At the same time, it is also
often in their interest that their data is readily available
when needed, for example to get more consultancy work
done, or to get a better medical diagnosis. It is unreal-
istic to assume that access control policies are perfect,
especially in complex and dynamic organizations. There
will be costs due to flaws, both when access is granted
to unauthorized users, and when access is not granted
to authorized users. Especially when the latter are high,
our approach may yield a better security solution than
traditional access control systems.

Our policy language is based on first-order predi-
cate logic, extended with special constructs for adminis-
trative policies, ownership and obligations. Our proof
system has been formalized using the proof checker
Twelf and a proof finder has been implemented in Pro-
log. Agents can compose proofs using the proof finder
and the proof checker allows an auditor to check those
proofs. Our obligations cover pre- and post-obligations
but not yet ongoing obligations [32]. The setup does, with
an adaption of the definitions of accountability, seem to
provide the means to include this type of obligations.
The obligations in our framework are both ‘use once’,
e.g. !pay($10) and ‘use as often as needed’ ?pay($10).

A crucial requirement to deploy our framework suc-
cessfully is that the actions of the users can be monitored,
and that the users performing these actions can be held

J. G. Cederquist et al.

accountable. This may exclude certain settings, such as
the internet, where monitoring user actions is infeasi-
ble and holding users accountable is even harder. In
other settings, such as the one discussed in this paper,
these requirements are not unreasonable. Recent laws
and legislation demand that enterprizes and hospitals
account for the disclosure of confidential documents [37,
38]. On the other hand, when data is not available, this
may cost customers and patients a lot. Tracing which
employees have accessed data, and demanding justifi-
cations afterwards, is a flexible way of ensuring that
procedures are being followed, without affecting the
availability of data. This is important to discourage bad
security practices. Recall the example in Sect. 1. If the
senior Charlie was not allowed to authorize an employee
to review the charts, he would be tempted to bypass the
security measures, say by sending the file conspicuously
by email, in order to get the work done quickly.

Acknowledgments We would like to thank the anonymous
reviewers of this paper, for their detailed and valuable comments
that have led to a more clear and precise exposition. We also thank
Pieter Hartel for the helpful discussions about this paper.

Finally, we would like to mention some of our sponsors:
J. G. Cederquist has been supported by the NWO project
ACCOUNT and partially supported by FEDER/FCT project
QuantLog POCI/MAT/55796/2004.
R. Corin and M. A. C. Dekker have been supported by the IOP
Generic Communication project PAW.
J. I. den Hartog has been supported by the EU project INSPIRED.
G. Lenzini has been supported by the EU-ITEA project Trust4All.

Appendix: Cut-elimination

In this section we prove a so-called cut-elimination theo-
rem which states that the cut rule is redundant; anything
proven using the cut rule can also be proven without
using this rule. The cut-rule can be written as follows.

Γ �a φ Γ ,φ �a ψ

Γ �a ψ
cut

Here φ is called the cut-formula. Below we do not con-
sider the left and right rules for obligations, as they do
not interfere with the cut-elimination property. For read-
ability, we only write the non-linear context Γ in the
sequents in this section, as the other two contexts are
irrelevant for this proof. For the same reason, in the
sequel we ignore the left and right rules for ! → and
? →.

The cut-elimination can be phrased in words as: If
we can proof some lemma φ and prove a formula ψ
using this lemma, then the formulaψ can also be proven
directly. Not having this very intuitive property would
indicate a very exotic logical system indeed. Cut-

elimination theorems, due to Gentzen, are considered a
central issue in the field of logics. A cut-elimination the-
orem exists for first-order logic as well as for a number of
other standard logical systems. The elimination of a cut
rule plays an important role in showing consistency of a
logic.

Another more practical reason for showing that the
cut rule is redundant, as mentioned in Sect. 6, is that the
cut-rule does not satisfy the sub-formula property; the
cut-formula, φ, in the premise may be completely absent
in the conclusion. A mechanical proof finder would have
to guess it. The sub-formula property is important to be
able to implement an efficient proof search. Basically, if
it is shown that the cut-rule is redundant, then the proof
search could be restricted to the system without the cut
rule.

Theorem 2 (Cut-elimination) Let the proof system with
the cut-rule be denoted with � and the proof system with-
out the cut-rule be denoted �†, then, for arbitraryΓ1,Γ2,∆
and φ,

Γ1;Γ2;∆ � φ ⇒ Γ1;Γ2;∆ �† φ (8)

Proof For proving the cut-elimination theorem for our
logic we follow a standard approach [29]: We show by
induction that proofs including a cut rule can be trans-
formed into proofs without this rule.

Our induction hypothesis states that, if we have a
cut-free proof D for Γ � φ and a cut-free proof E for
Γ ,φ � ψ then we also have a cut-free proof F for
Γ � ψ . This induction hypothesis is applied if the cut-
formula (φ) is simplified or if the cut formula stays the
same and one of the proofs is shortened (and the other
proof is not lengthened).

Below, a formula is called principal in the rule, if
the rule explicitly introduces the formula (either left or
right of the �). Furthermore, we will use the fact that
any proof for Γ � φ can be weakened to a proof for
Γ ,ψ � φ by using the same rules but simply adding ψ
in each step.

The proof is by case-analysis over the last rule used
in the proofs D and E . For clarity we show a table with
the cases for D and E . Here pr. denotes principal.

D D φ not pr. φ pr.
init(I) owns-L in D in D

E init(I) 1 2 2 2
E owns-L 1 3 5 4

φ not pr. in E 1 6 5 6
φ pr. in E 1 3 5 7

The rules init(I) and owns-L are the base-cases of the
induction over the length of the derivation, so they are

Audit-based compliance control

done first. In the proof we leave out the rules concern-
ing use once and use many obligations, ! → R, ! → L,
? → R and ? → L, and the �R rule, which amount to
trivial cases below:

1. D ends in I. When D consists of a single init rule,

D :
Γ ′,φ � φ I

(i.e.,Γ = Γ ′,φ) then applying contraction toΓ ′,φ,φ
� ψ , which is the conclusion of E , gives us the
required sequence Γ ′,φ � ψ . Thus E followed by
contraction is a cut-free proof for this sequent.

2. E ends in I. When E consists of a single init(I) rule
and φ is used,

E :
Γ ,ψ � ψ I

then the cut-formula is ψ and a cut-free derivation
of ψ is simply D . Otherwise, if φ is not used,

E :
Γ ′,ψ ,φ � ψ I

(i.e., Γ = Γ ′,ψ), then a cut-free proof for the
required sequent Γ ′,ψ � ψ is a single application
of the init rule.

3. D ends in owns-L. When D consists of a single appli-
cation of the owns-L rule, then φ is atomic (see
Sect. 6.1),

D :
Γ ′, owns(a, d) � φ owns-L

so if φ is principal in the last inference in E then this
inference must use rule init, covered in 2, or owns-
maysay or owns-L. In the latter two cases, one can
simply contract the context to obtain the required
sequent. In case φ is not principal in E ’s last step,
then the induction hypothesis for a smaller proof E
is used, see case 6.

4. E ends in owns-L. When E is owns-L and φ is used,
then φ is an owns() predicate.

E :
Γ , owns(a, d) � ψ owns-L

There are no cases for φ principal in D ’s last step
except init and owns-L, both treated in the cases 1
and 3. In case φ is not principal in D ’s last step,
then the induction hypothesis for a smaller proof
D is used, see case 5. Otherwise if φ is not used in
owns-L,

E :
Γ ,φ, owns(a, d) � ψ owns-L,

then a cut-free derivation ofψ is a single application
of the owns-L rule.

5. φ is not principal in D . The cut-formula is not prin-
cipal in the derivation D if the derivation ends in
one of the (left) rules: →L, ∀L, ∧L1, ∧L2, concl,
owns-maysay.
All the cases for the different left rules are similar.
As an example we show the case for ∧L1.
If the proof D consists of proof D1 followed by
∧ − L1:

D :
Γ ′,φ1 � φ

Γ ′,φ1 ∧ φ2 � ψ ∧L1 E : Γ ′,φ1 ∧ φ2,ψ � ψ ′

then by weakening D1 with φ1 ∧ φ2 and weakening
E with φ1 one get proofs for Γ ′,φ1,φ1 ∧ φ2 � ψ

and Γ ′,φ1,φ1 ∧ φ2,ψ � ψ ′ thus by induction (the
weakened D1 is shorter than D and the weakened
E is the same length as E), there is a cut-free proof
for Γ ′,φ1,φ1 ∧ φ2 � ψ ′. By applying ∧ − L1 and
then contraction one derives the required sequent
Γ ′,φ1 ∧ φ2 � ψ ′.
The cases for the other left rules are done in the
same way.

6. φ is not principal in E . One can apply the induction
hypothesis on the D and E1, to obtain a cut-free
proof F1 and then apply the same right rule as the
right-hand side of the sequents proven by E1 and
F1 are the same.

7. φ is principal in both D and E . This is the most
elaborate case. We must split cases for the differ-
ent forms of the cut-formula and use the induction
hypothesis for a sub-formula of the cut-formula.

(a) Subcase φ = φ1 → φ2. There is one case for
the last inference of D :

D :
Γ ,φ1 � φ2

Γ � (φ1 → φ2)
→ L

and E ’s last inference must be →L:

E :
Γ � φ1 Γ ,φ2 � ψ
Γ , (φ1 → φ2) � ψ → L

One can apply the induction hypothesis on the
premise in D and the first premise in E to
obtain a cut-free proof for Γ � φ2 and again
use the induction hypothesis on this proof and
the second premise in E to obtain a cut-free
proof the required sequent. (Both cases use a
simpler cut formula.) The cases for φ with the
connectives ∧ and ∀ are done in the same way.

J. G. Cederquist et al.

(b) Subcase φ = maySay(b, c,φ1). There is one
case for the last inference in D :

D :
Γ ′ � φ1

Γ ′′, maySay(b, c,Γ ′) � maySay(b, c,φ1)
refine

Then E ’s last inference must be refine:

E :
Γ ′,φ1 � ψ1

Γ ′′, maySay(b, c,Γ ′), maySay(b, c,φ1) � maySay(b, c,ψ1)
refine

then the induction hypothesis can be applied
for the proofs D1 and E1 of the premises to
reach the required sequent without the use of
either refine-rule.

(c) Subcase φ is atomic. There are two cases for the
last step in D (where φ is principal), being init
and owns-L, which were treated in the cases 1
and 3.

This completes the proof.

References

1. AC2 proof tools at http://www.cs.ru.nl/paw
2. Abadi, M.: Logic in access control. In: Kolaitis, P.G. (ed.) Pro-

ceedings of the Symposium on Logic in Computer Science
(LICS), pp. 228–233. IEEE Computer Society Press (2003)

3. Appel, A.W., Felten, E.W.: Proof-carrying authentication. In:
Tsudik, G. (ed.) Proceedings of the Conference on Computer
and Communications Security (CCS), pp. 52–62. ACM Press
(1999)

4. Ashley, P., Hada, S., Karjoth, G., Schunter, M.: E-p3p privacy
policies and privacy authorization. In: Samarati, P. (ed.) Pro-
ceedings of the ACM workshop on Privacy in the Electronic
Society (WPES 2002), pp. 103–109. ACM Press (2002)

5. Bandmann, O.L., Firozabadi, B.S., Dam, M.: Constrained del-
egation. In: Abadi, M., Bellovin, S.M. (eds.) Proceedings of
the Symposium on Security and Privacy (S&P), pp. 131–140.
IEEE Computer Society Press (2002)

6. Becker, M.Y., Sewell, P.: Cassandra: flexible trust manage-
ment, applied to electronic health records. In: Focardi, R.
(ed.) Proceedings of the Computer Security Foundations
Workshop (CSFW), pp. 139–154. IEEE Computer Society
Press (2004)

7. Beckert, B., Posegga, J.: leantap: lean tableau-based deduc-
tion. J. Autom. Reasoning 15(3), 339–358 (1995)

8. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust man-
agement. In: Proceedings of the Symposium on Security and
Privacy (S&P), pp. 164–173. IEEE Computer Society Press
(1996)

9. Cederquist, J.G., Corin, R.J., Dekker, M.A.C., Etalle, S., den
Hartog, J.I.: An audit logic for accountability. In: Sahai, A.,
Winsborough, W.H. (eds.) Proceedings of the International
Workshop on Policies for Distributed Systems and Networks
(POLICY), pp. 34–43. IEEE Computer Society Press (2005)

10. Chong, C.N., Peng, Z., Hartel, P.H.: Secure audit logging
with tamper-resistant hardware. In: Gritzalis, D., di Vimercati,
S.D.C., Samarati, P., Katsikas, S.K. (eds.) 18th IFIP TC11
International Conference on Information Security and
Privacy in the Age of Uncertainty (SEC), Athens, Greece,
pp. 73–84. Kluwer Academic, Dordrecht (2003)

11. Corin, R., Etalle, S., den Hartog, J.I., Lenzini, G., Staicu, I.: A
logic for auditing accountability in decentralized systems. In:

Dimitrakos, T., Martinelli, F. (eds.) Proceedings of the IFIP
Workshop on Formal Aspects in Security and Trust (FAST),
vol. 173, pp. 187—202. Springer, Berlin (2004)

12. DeTreville, J.: Binder, a logic-based security language. In:
Proceedings of the Symposium on Research in Security and
Privacy (S&P), pp. 105–113. IEEE Computer Society Press
(2002)

13. Dowek, G., Jiang, Y.: Eigenvariables, bracketing and the
decidability of positive minimal intuitionistic logic. Electr.
Notes Theor. Comput. Sci. 85(7) (2003)

14. Garg, D., Bauer, L., Bowers, K., Pfenning, F., Reiter, M.:
A linear logic of authorization and knowledge. In: Proceed-
ings of the European Symposium On Research In Computer
Security (ESORICS). Springer, Berlin (2006)

15. Garg, D., Pfenning, F.: Non-interference in constructive
authorization logic. In: Proceedings of the Computer Secu-
rity Foundations Workshop (CSFW). IEEE Computer Soci-
ety Press (2006)

16. Halpern, J.Y., van der Meyden, R.: A logic for SDSI’s
linked local name spaces. In: Syverson, P. (ed.) Proceedings
of the Computer Security Foundations Workshop (CSFW),
pp. 111–122. IEEE Computer Society Press (1999)

17. Halpern, J.Y., Weissman, V.: Using first-order logic to reason
about policies. In: Focardi, R. (ed.) Proceedings of the Com-
puter Security Foundations Workshop (CSFW), pp. 187–201.
IEEE Computer Society Press (2003)

18. Hu, V., Ferraiolo, D., Kuhn, D.: Assessment of access con-
trol systems — NIST interagency report. Technical report,
National Institute of Standards and Technology (2006)

19. Jajodia, S., Gadia, S., Bhargava, G.: Logical design of audit
information in relational databases. In: Information Security:
An integrated Collection of Essays, pp. 585–595. IEEE Com-
puter Society Press (1995)

20. Karjoth, G., Schunter, M., Waidner, M.: Platform for enter-
prise privacy practices: Privacy-enabled management of cus-
tomer data. Privacy Enhancing Technologies (2002)

21. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: a
logic-based approach to distributed authorization. ACM
Trans. on Inf. Syst. Secur. (TISSEC) 6(1), 128–171
(2003)

22. Li, N., Mitchell, J.: Datalog with constraints: A foundation for
trust management languages. In: Dahl, V., Wadler, P. (eds.)
Proceedings of the International Symposium on Practical
Aspects of Declarative Languages (PADL) (2003)

23. Li, N., Mitchell, J., Winsborough, W.: Design of a role-based
trust-management framework. In: Abadi, M., Bellovin, S.M.
(eds.) Proceedings of the Symposium on Research in Secu-
rity and Privacy (S&P), pp. 114–130. IEEE Computer Society
Press (2002)

24. Longstaff, J.J., Lockyer, M.A., Thick, M.G.: A model of
accountability, confidentiality and override for healthcare
and other applications. In: Proceedings of the Workshop on
Role-based Access Control (RBAC)

25. Necula, G.C.: Compiling with proofs. Ph.D. thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA (1998)

26. OASIS Access Control TC: eXtensible Access Control
Markup Language (XACML) Version 2.0 — Oasis Standard,
1 Feb 2005 (2005)

27. Park, J., Sandhu, R.: Originator control in usage control. In:
Lobo, J., Dulay, N. (eds.) Proceedings of the International
Workshop on Policies for Distributed Systems and Networks
(POLICY), p. 60. IEEE Computer Society, Washington, DC,
USA (2002)

28. Park, J., Sandhu, R.: Towards usage control models: beyond
traditional access control. In: Bertino, E. (ed.) Proceedings of

Audit-based compliance control

the Symposium on Access Control Models and Technologies
(SACMAT), pp. 57–64. ACM Press (2002)

29. Pfenning, F.: Linear logic course handouts. http://www.cs.cmu.
edu/ fp/courses/linear.html (2002)

30. Pfenning, F., Schürmann, C.: System description: Twelf—
a meta-logical framework for deductive systems. In:
Ganzinger, H. (ed.) Proceedings of the International Con-
ference on Automated Deduction (CADE), pp. 202–206.
Springer, Berlin (1999)

31. Rissanen, E., Firozabadi, B.S., Sergot, M.J.: Discretionary
overriding of access control in the privilege calculus. In:
Dimitrakos, T., Martinelli, F. (eds.) Proceedings of the 2nd
IFIP Workshop on Formal Aspects in Security and Trust
(FAST), pp. 219–232. Springer, Berlin (2004)

32. Sandhu, R., Park, J.: Usage control: A vision for next gen-
eration access control. In: Gorodetsky, V., Popyack, L.J.,
Skormin, V.A. (eds.) Proceedings of the International Work-
shop on Mathematical Methods, Models, and Architectures
for Computer Network Security MMM-ACNS. LNCS, vol.
2776, pp. 17–31. Springer, Berlin (2003)

33. Sandhu, R., Samarati, P.: Access control: principles and prac-
tice. IEEE Commun. Mag. 32(9), 40–48 (1994)

34. Sandhu, R., Samarati, P.: Authentication, access control, and
audit. ACM Comput. Surv. 28(1), 241–243 (1996)

35. Shmatikov, V., Talcott, C.L.: Reputation-based trust manage-
ment. J. Comput. Secur. 13(1), 167–190 (2005)

36. Szabo, E.M. ed.: The Collected of Gerhard Gentzen. North
Holland, Amsterdam (1969)

37. The European Parliament and the Council of the Euro-
pean Union: UE DIRECTIVE 2002/58/EC on privacy and
electronic communications. Official Journal of the European
Union. http://europa.eu.int/eur-lex/pri/en/oj/dat/2002/l_201/
l_20120020731en 00370047.pdf (2002)

38. The US Department of Health and Human Services: Sum-
mary of the HIPAA Privacy Rule. Available on the website
http://www.hhs.gov/ocr/privacysummary.pdf (2002)

39. Topkara, M., Topkara, U., Atallah, M.J.: Words are not
enough: sentence level natural language watermarking. In:
Proceedings of the International workshop on Contents Pro-
tection and Security (MCPS), pp. 37–46. ACM Press (2006)

40. U.S. Securities and Exchange Commission: Sarbanes-oxley
act (2002)

41. Wang, X., Lao, G., De Martini, T., Reddy, H., Nguyen, M.,
Valenzuela, E.: XrML: eXtensible rights markup language.
In: Kudo, M. (ed.) Proceedings of the Workshop on XML
Security (XMLSEC), pp. 71–79. ACM Press (2002)

42. Whitehead, N., Abadi, M., Necula, G.C.: By reason and
authority: a system for authorization of proof-carrying code.
In: Focardi, R. (ed.) Proceedings of the Computer Security
Foundations Workshop (CSFW), pp. 236–250. IEEE Com-
puter Society Press (2004)

	Audit-based compliance control
	Abstract
	Introduction
	In a nutshell
	The framework
	Policy language
	Proof obligation and conclusion
	Logging actions
	Audits
	Proof system
	Example
	General setting
	Snapshots
	Implementation
	The proof checker
	The proof finder
	Related work
	Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

