
A Posteriori Compliance Control ∗

Sandro Etalle
University of Twente

sandro.etalle@utwente.nl

William H. Winsborough
University of Texas at San Antonio

wwinsborough@acm.org

ABSTRACT
While preventative policy enforcement mechanisms can pro-
vide theoretical guarantees that policy is correctly enforced,
they have limitations in practice. They are inflexible when
unanticipated circumstances arise, and most are either in-
flexible with respect to the policies they can enforce or in-
capable of continuing to enforce policies on data objects as
they move from one system to another. In this paper we
propose an approach to enforcing policies not by preventing
unauthorized use, but rather by deterring it. We believe
this approach is complementary to preventative policy en-
forcement. We call our approach APPLE for A-Posteriori
PoLicy Enforcement. We introduce APPLE Core, a logi-
cal framework for using logs to verify that actions taken by
the system were authorized. A trust management system is
used to ensure that data objects are provided only to users
operating on auditable systems who are subject to penalty
should they be found in violation. This combination of au-
dit and accountability provides a deterrence that strongly
encourages trustworthy behavior, thereby allowing a high
level of assurance of end-to-end policy enforcement.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; D.4.6 [Operating Sys-
tems]: Security and Protection—Access Controls Informa-
tion Flow Controls

General Terms
Security, Theory

Keywords
access control, trust management, policy enforcement

∗This work was partially done during the first author’s stay
at the University of Trento (Italy) and was supported by the
BSIK Freeband project I-Share, by the EU project SEREN-
ITY and by NSF awards CCR-0325951 and CCF-0524010.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’07, June 20-22, 2007, Sophia Antipolis, France.
Copyright 2007 ACM 978-1-59593-745-2/07/0006 ...$5.00.

1. INTRODUCTION
The problem of policy enforcement—guaranteeing that

data is used according to established policies and is not dis-
closed to or corrupted by unauthorized users—is paramount
to our IT dominated world. In particular, in inter-
organizational cooperation, collaborating organizations of-
ten need to protect their intellectual property by enforcing
policies that capture objectives such as “this document may
be seen and modified only by senior engineers working on
project X”

The approaches to enforcement of such policies most com-
monly used are preventative, in the sense that unautho-
rized actions are prevented from occurring. By far the most
widely used method is access control (AC), wherein unau-
thorized access is prevented. There has been a very large
amount of attention paid to AC (to scratch the surface,
see [15, 23, 21, 5] and the survey by Abadi [2]). Another
approach that is emerging is by digital rights management
(DRM) [13, 12, 14, 24].

By their nature, when correctly deployed, preventative
approaches provide guarantees that policies as stated will
not be violated. Unanticipated circumstances (which in col-
laborative environments are rather common) cannot be met
by circumventing preventative controls. The techniques we
develop in this paper offer a very different interpretation of
“policy enforcement,” by which we intend a usage of “en-
forcement” somewhat akin to that in “law enforcement,”
and that can be employed in a manner complementary to
preventative means. Preventative enforcement should be
used only to prevent things that most assuredly must never
happen. Based on deterrence, the approach we propose can
be used to proscribe actions that are normally considered
wrong. In it, unauthorized actions can be performed, but
the perpetrators can be held accountable for such actions.
Although in many environments it may not be possible to
provide the level of deterrence required to make our ap-
proach workable, in many other environments, the deter-
rence provided by such accountability against violating pol-
icy can be very strong1. In these environments, our ap-
proach can considerably augment the level of assurance pro-
vided by other methods, and it can be used with policies
that are sufficiently strict that you would not want to make
violating them utterly impossible. When unexpected, ex-
tenuating circumstances arise, system participants can rely

1In the late ’90’s, a high-level IT manager at the New York
Stock Exchange told one of the authors that access control
on the trading floor was unnecessary because of auditing and
the high opportunity cost of losing one’s trader job.

on their own judgment as to whether an exception to stan-
dard policy should be made. To illustrate the principle with
an example from the physical world, under normal circum-
stances, a school bus driver commandeering a bus for his
own purposes was almost certainly committing a crime in
New Orleans. However, doing so to help a neighborhood
evacuate as Hurricane Katrina approached would probably
have been recognized as heroic.

The setting we consider here is that of a number of or-
ganizations temporarily sharing resources and information
on a collaborative project. The IT infrastructure of these
organizations is heterogeneous: in particular their AC sys-
tems may be pairwise incompatible. Let us state the main
requirements that the collaborative environments we aim to
support impose on policy enforcement system.

1. Policy enforcement must be end-to-end. This means
that information in documents is protected from the
time it is entered into the system until the point at
which it is deleted, no matter where the information
may flow in the mean time. So when a document is
released to a remote host or domain, the policy that
governs it remains associated with it and enforced.

2. Users should be able to create, modify and merge doc-
uments using the programs they are accustomed to use
for these purposes.

3. In dynamic cooperations, where documents are owned
by different users or organizations, the owner of a doc-
ument should be free to determine the (initial) policy
that applies to it.

4. Policies should be able to refer to dynamic groups,
and should govern both the use and release of the doc-
ument(s) they refer to as well as the administration of
the policy itself (e.g. “any manager may modify this
document as well as restrict this policy”).

5. The environment is highly decentralized and does not
offer compatible role or level assignment (as in RBAC
or MAC): in dynamic cooperations we cannot expect
participating organizations to find a way of merging
their MAC or RBAC systems for the time required by
the cooperation.

6. When they believe circumstances justify it, it should
be possible for a user to elect to perform actions that
are not normally permitted. In this case, the decision
should be subject to inquiry and review. Only users
that can be held accountable should have this option.

We are not aware of any preventative policy enforcement
methods that meet all these requirements. In particular, re-
quirement (6) implies a significant deviation from a strictly
preventative approach. Yet this requirement is particularly
likely to be important in the context of cooperative arrange-
ments that are in a state of flux. Moreover, emergencies
often justify unanticipated exceptions, and require impro-
visation. Even the first five requirements cannot be met
by preventative methods of which we are aware, namely
the various AC models or DRM. Mandatory Access Con-
trol achieves end-to-end enforcement, but does not allow
policy administration and requires a fixed level infrastruc-
ture (MAC can deal with (1), (2) and the first part of (4),
but not with (3), (5) and (6), and the second part of (4));
on the other hand, Discretionary Access Control deals well

with the administrative problems, but does not realize end-
to-end policy enforcement, nor can it deal with unexpected
situations. Finally, as currently implemented, DRM is too
rigid for collaborative environments; updating and/or merg-
ing documents and retransmitting the result to other users is
beyond the capabilities of DRM systems to support. More-
over current DRM systems do not allow policy administra-
tion.

We believe that it is possible to satisfy the above require-
ments by utilzing a detective approach. By ensuring that
unauthorized redistribution of data is detected, individuals
can be held accountable for their actions. So long as the
individuals in question are liable or otherwise exposed to re-
dress, we argue that deterring illegitimate behavior can be
almost as effective as preventing it, with the great advan-
tage of being much more flexible. We call this approach a
posteriori policy enforcement.

To advance our thesis, this paper presents APPLE (A
Posteriori PoLicy Enforcement), a framework for policy spec-
ification and end-to-end policy enforcement in collaborative
environments. In APPLE, the burden of preventing viola-
tions of established policies is not assigned to a trusted com-
ponent, but rests with the user, who is not prevented from
acting wrongly, but is held accountable for her actions. Dis-
tributed auditing authorities routinely check whether users
have obtained and used their data in accordance with the
applicable policies. When audited, a user shows her log to
demonstrate that (a) she possessed the policies allowing her
to carry out the actions she performed, (b) she fulfilled the
obligations required by these policies and (c) she acquired
the policies from trustworthy sources.

There are three critical components of a-posteriori policy
enforcement: logging, auditing, and accountability. Logging
records actions taken by users. A log is the history of user’s
action as recorded by the infrastructure. Auditing is the
process whereby those logs are interrogated to determine
whether the logs are consistent with the policies associated
with transmitted documents and with observations made
by the auditing authority about the apparent relationships
between transmitted documents and other documents avail-
able to the user. Accountability is the property of a user
of being susceptible to penalty should misbehavior be de-
tected. The penalty mechanism needs to exist, but its na-
ture is outside the scope of the present work. Interestingly,
such critical components are increasingly present in large
organizations: controls over access and changes to (critical)
data have gained in their importance with the introduction
of regulations such as the Sarbanes-Oxley Act. Here, en-
forcing audit trails (recording automatically who did what
when to what document and how) is an essential part of
having such controls in place. Our system leverages this
and provides end-to-end policy enforcement in collaborative
environments. It does this not by merging AC systems of
participating organizations, but by using logging and audit-
ing infrastructure that is becoming increasingly standard as
companies seek to comply with regulations, as well as some
trusted communication systems (more about this later).

The concrete contribution of the paper is twofold:

• We present APPLE Core, a logical framework for a-
posteriori policy enforcement. This framework com-
bines trust management and elements of audit logic.
For instance, it uses trust management techniques to
provide reasonable assurance that trusted parties are

compliant with auditing and would be sufficiently ac-
countable for their misdeeds to deter them.

• We discuss conditions under which such a framework
could be deployed in practice. We suggest techniques
that could be used to satisfy the security assumptions
of the logical framework.

The significance of using a logical framework to define
a-posteriori policy enforcement is threefold: doing so (1)
defines compliance in a precise, unambiguous manner, (2)
organizes the content that must be included in the log and
(3) defines precisely what queries an auditing authority can
expect answers to.

A-posteriori policy enforcement offers interoperability, flex-
ibility and scalability, which are crucial features in collabo-
rative environments. On the other hand, a-posteriori policy
enforcement does not give 100% guarantee that the data
will not be used illegitimately—only that transgressors can
be held accountable for their actions and are deemed to have
something to lose when this takes place. Therefore relying
exclusively on a-posteriori policy enforcement is appropri-
ate only when resource owners are willing to accept some
(albeit small) risk in the interest of the aforementioned ben-
efits. Thus, while a-posteriori enforcement offers flexibility
not provided by preventative means, preventative enforce-
ment may be more appropriate when it is important that a
certain prohibition not be violated under any circumstances.
The two approaches are mutually complementary. In our
view, a-posteriori policy enforcement should be integrated
with classical (preventive) access control methods to provide
greater flexibility, particularly with respect to empowering
users to handle exceptional situations by overriding the pre-
defined authorizations with the understanding that they will
have to answer for their actions.

The rest of this paper is organized as follows. Section 2
provides an outline of the APPLE system. Section 3 present
the formal system, APPLE Core, and illustrates it with an
example, and discusses important extensions. Section 4 pro-
vides some discussion and concludes.

2. OUTLINE OF THE APPLE SYSTEM
To illustrate the pivotal elements of the system we now

give an informal description of it. Throughout this paper, we
assume that data is contained in unstructured documents,
and that to each document, a single policy applies. Han-
dling structured data objects—such as databases that are
shared by multiple users and that contain records having
heterogeneous policies—are left as future work.

In a nutshell, the system works as follows.

(1) Each document (i.e., data object) is always accompa-
nied by a (sticky) policy that labels the document, and by
a list of parent documents (i.e., the list of (log entries of)
documents from which it derives). This policy determines
who may possess, modify and distribute the document, and
who may modify the policy and in what ways.

(2) Users may receive, modify and redistribute documents
and policies so long as the applicable policy allows this and
the users log these actions. (When receiving a document
the recipient must also check that the source of the data
is trustworthy, as this provides reasonable assurance of the
integrity and authenticity of the associated policy.) The log
is secure in the sense that users can log actions but cannot

modify an entry in the log.

(3) Trusted components are used to realize an auditable sys-
tem, in which all communication is logged; e.g., no-one can
send an email without logging it.

(4) Distributed auditing authorities routinely check whether
users have obtained and used their data in accordance with
the applicable policies. When audited, a user shows her log
to demonstrate that at the time she performed the action,
(a) policies she believed to be in force at the time permitted
her to carry out the actions she performed, (b) she fulfilled
the requirements of these policies and (c) she acquired the
policies from trustworthy sources.

We concentrate on monitoring the transmission of docu-
ments. It is in transmitting sensitive documents that the
gravest policy violations occur. Happily, transmission also
affords the greatest opportunity for detection of unautho-
rized activity, since it is possible to observe transmission
without cooperation of the monitored user. Increasingly
secure-boot technologies are also enabling remote authori-
ties to gain assurance in the trustworthiness of at least some
components of monitored systems. This trend is likely to
enable effective auditing of actions that take place entirely
within the local host. In this case, our system could be ex-
tended to monitor other actions, such as printing, playing,
viewing, or even simply possessing data objects.

Policies. The policy label of a document determines (a)
who is the owner of the document, (b) who may transfer the
document and who may receive it, (c) who may modify the
document, (d) who may modify the associated policy and
in what ways, and (e) who may merge the document with
other documents, and under what conditions. The essence
(though not the syntax) of one simple policy would be: “this
document is owned by Bob; this document may be transmit-
ted to engineers working on project X, and may be modified
only by senior executives.”

Trustworthiness≈Deterrence = Auditability + Account-
ability. When a user receives, creates, modifies or transmit
a document, he is required to check whether the policy al-
lows for this action and log this action and the evidence that
shows that these actions were authorized at the time they
were performed. He is also obligated to archive all policy-
labeled documents so they can be inspected later by the au-
diting authorities. Additionally, when a user receives a doc-
ument from someone else, he is required to check the trust-
worthiness (auditability and accountability) of the source
to establish reasonable assurance that the policy labeling
the document is authentic. This obligation of the recipi-
ent is analogous to that which occurs in the real world, as
illustrated by the following except from a web article cau-
tioning consumers about their culpability for purchases of
illegitimate goods [1]: Happening lately in Italy: a Dan-
ish tourist buys a pair of supposed designer glasses for 10
euros—and has to pay a fine of 3.333 euros. The reason:
the Italian inland-revenue office is fighting against counter-
feit products. ... Punished will be [anyone] who buys or
accepts goods which quality, way of selling or price arouse
suspicion that the rules relating to origin, provenance and
intellectual property have been ignored. In future, it will be
advisable to get some information about the origin of the

product before the purchase.
The fact that consumers have some responsibility for ques-

tioning the legitimacy of the seller or the goods is a key
factor in deterring commerce in stolen goods.

In our framework, we need a similar factor to deter the il-
legitimate diffusion of confidential documents. Suppose Al-
ice collects in one document a number of medical records
that she is not authorized to have. She attaches to the doc-
ument a policy to the effect that “this document is owned
by Alice and may be disclosed to Bob.” Alice then sells the
policy-labeled document to Bob for $4000. Just like in the
case of the ersatz designer glasses, Bob needs to be cau-
tious when accepting receipt of the illegitimate document.
In our system, before accepting the document Bob must
check whether Alice is auditable and accountable. If this
is not the case, he will be unable to demonstrate to the
auditing authority that he was sufficiently cautious when
accepting the document.

Summarizing, APPLE is based on the premise that trust-
worthiness can be assessed indirectly by assessing deterrence
from misbehavior. Deterrence in turn can be determined
by assessing the chances misbehavior will be detected (au-
ditability) and the likely consequences if that occurs (ac-
countability).

Logging. Each user keeps a log of the security critical ac-
tions he executed, together with the evidence showing that
he was allowed to perform them. There are four main types
of log entries: modification entries (logging the creation and
the modification of a document), input entries (logging the
receipt of a document), output entries (logging the transmis-
sion of documents to other users), and policy entries (log-
ging the policy rules that show actions were authorized at
the time they were performed). In case of actions involving
more than one agent (i.e., communication), the log entry for
these should contain a non-repudiatable proof of origin and
of receipt.

The essential requirement is that all communication is
logged : the infrastructure must guarantee that no commu-
nication can take place without that the user creates an
appropriate log of it. This could be achieved in a vari-
ety of ways. One is by using trusted software components
on the hosts being monitored. To provide truly high as-
surance, such an approach would require secure-boot tech-
nology. Reasonable assurance can probably be obtained in
environments where the user does not have administrator
privileges and the installed software is tightly controlled by
the IT provider. Another approach to increasing the level
of assurance is to monitor network traffic.

If the communication is encrypted, then guaranteeing that
all communication is properly logged provides certain chal-
lenges to APPLE. However, they can be managed. There
are for instance two simple ways to allow APPLE to cope
with encrypted communication: When sending/receiving a
document, a user may either (a) log a non-encrypted version
of it, together with a proof of the fact that the message that
was sent/received was an encrypted version of the logged
one, or (b) log the encrypted version, but then be ready to
decrypt it when the AA asks him to do so (in this case the
user has to store the keys used for encryption and decryption
somewhere).

Auditing. Each system has one or more Auditing Authori-
ties (AAs), in charge of checking that users behave correctly.
Most of the AA operations can be carried out automatically;
these are:

Entailment check The AA picks a document that it has be-
come aware is (or should be) in the user’s possession, and
checks if the policy belonging to it entails the policies of its
parent documents.

Source check The AA picks a document that it has become
aware is (or should be) in the user’s possession, and de-
termines whether the user’s log contains evidence that the
document is or was derived from a document received from
another user. In this case, the AA determines whether the
log contains satisfactory evidence that it was reasonable to
trust the source with respect to the integrity and authen-
ticity of the document’s policy label. It also determines
whether that label permitted the communication.

Destination check The AA picks a document that it has be-
come aware the user transmitted, and determines whether
the user’s log contains evidence that the communication was
permitted. This can include performing a source check to
evaluate the circumstances in which the document came into
the user’s possession.

Content check (this may eventually require human interven-
tion) The AA picks a document that it has become aware
is in the user’s possession, and analyzes the content of the
document, looking for data whose provenance may not be
correctly recorded, or its confidentiality, protected. The AA
may in this and other checks enlist the assistance of other
AAs that audit other users.

Why does it work. This system is clearly not watertight.
Individual policy violations may go undetected. However
the nontrivial risk of being caught and held accountable (for
years) will, we believe, in many contexts deter frequent, sig-
nificant violations. The principle is very similar to that used
in criminal justice in open societies. Individuals are not con-
trolled so tightly as to prevent all crime. However, society
is not overwhelmed by criminality because of deterrence.

3. A FORMAL SYSTEM
This section present the APPLE system. It begins by

briefly reviewing the simple trust management system that
we use. Then it presents the APPLE Core—the model it-
self. An example then illustrates how the formal system is
used. The section concludes by discussing some important
extensions intended to increase the flexibility of the system.

Preliminaries: Trust Management and RT0. Trust man-
agement [7, 22, 10, 9, 11, 16, 17, 6, 19, 18, 25] is an approach
to access control in decentralized distributed systems with
access control decisions based on credentials issued by mul-
tiple principals. In trust management systems, credentials
are maintained in a distributed manner and are often digi-
tally signed to ensure their authenticity and integrity; such
credentials are sometimes called statements or certificates.
A trust management (TM) system is an essential compo-
nent of APPLE, throughout the paper we shall employ the
TM language RT0 [19], however, we want to stress that AP-
PLE would work in combination with any TM system. In
the language RT0, a principal (agent) is a uniquely identi-

fied individual or process. Principals are denoted by names
starting with an uppercase, typically, A, B, D. A principal
can define a role, which is indicated by principal’s name fol-
lowed by the role name, separated by a dot. For instance
A.r, and UTSA.students are roles. A is the owner of A.r.
We use names starting with a lowercase letter to indicate
role names. A role denotes a set of principals (the prin-
cipals that populate it, i.e., the members of the role). To
indicate which principals populate a role, RT0 allows the
owning principal A (and only A) to issue (and revoke) four
kind of credentials:

– Simple Member : A.r ←− D. With this credential A as-
serts that D is a member of A.r.

– Simple Inclusion: A.r ←− B.r1. With this credential A
asserts that A.r includes (all members of) B.r1. This rep-
resents a delegation from A to B, as B may add principals
to become members of the role A.r by issuing credentials
defining (and extending) B.r1.

– Linking Inclusion: A.r ←− A.r1.r2. We call A.r1.r2 a
linked role. With this credential A asserts that A.r includes
B.r2 for every B that is a member of A.r1. This represents
a delegation from A to all the members of the role A.r1.

– Intersection Inclusion: A.r ←− B1.r1 ∩ B2.r2. We call
B1.r1∩B2.r2 an intersection. With this credential A asserts
that A.r includes every principal who is a member of both
B1.r1 and B2.r2. This represents partial delegations from A
to B1 and to B2.

The definition of RT0 given here is a slightly simplified (yet
expressively equivalent) version of the one given in [19]. We
use the term role expression to refer to an expression of any
one of the forms A, B.r, A.r1.r2, or B1.r1 ∩ B2.r2. At a
given time, credentials currently issued, but not yet revoked
by principals in the system are called valid credentials. The
set of credentials that are currently valid is called the current
policy state. We use P to denote sets of valid credentials.
For uniformity, we use the notation P |∼ B ∈ A.r to indicate
that P entails that B is a member of A.r. Below we report
the semantics of RT0 given in proof-system style (where for
simplicity we omitted the rules for the logical operators and
for ∃). It can be shown that this semantics is equivalent to
the standard one i.e., that P |∼ B ∈ A.r iff B ∈ [[A.r]]SP(P)

in the notation of [19].

{A.r ←− D} ∪ P |∼ D ∈ A.r

{A.r ←− A.s.t} ∪ P |∼ ∃B, B ∈ A.s ∧ D ∈ B.t

{A.r ←− A.s.t} ∪ P |∼ D ∈ A.r

{A.r ←− B.s} ∪ P |∼ D ∈ B.s

{A.r ←− B.s} ∪ P |∼ D ∈ A.r

{A.r ←− B.s ∩ C.t} ∪ P |∼ D ∈ B.s ∧ D ∈ C.t

{A.r ←− B.s ∩ C.t} ∪ P |∼ D ∈ A.r

3.1 APPLE Core
Now we introduce APPLE’s formal framework. For the

sake of simplicity, we assume that each user has exactly one
host (we identify users and hosts). This restriction helps

the exposition and can simply be removed by referring to
the combination user/host rather than just the user.

Policies & Documents. Sticky policies are a pivotal ele-
ment of APPLE: each document is equipped with a policy
label that governs its distribution and modification. Pol-
icy labels are constructed using policy predicates: {owner ,
maymodify , mayrefine, maytell}; we call the atomic formu-
las over these predicates policy atoms:

• owner(A): “agent A owns this document”

• maymodify(A): “agent A may modify this document”

• maytell(A, B): means that the document may be sent
from agent A to agent B. In practice, this has two
meanings, according to the agent who is using it: (1):
“agent A may send this document agent B” and (2)
“agent B may receive this document from A.

• mayrefine(A): “agent A may refine (make more re-
strictive) the policy of this document”

In general, these predicates may be applied to RT role ex-
pressions. For instance, we consider owner(A.r) to be a
policy atom stating that “any member of A.r owns this doc-
ument”. Technically, owner(A.r) is just a shorthand for
the first-order formula ∀x(x ∈ A.r → owner(x)). Clearly,
in this case, to establish the semantics of a policy we need
to refer to the state (P) of the trust management system,
which determines the semantics of A.r. This forms the link
between sticky policies and trust management in APPLE.
For instance, the statement P |∼ owner(A.r) → owner(B)
indicates that the formula ∀x(x ∈ A.r → owner(x)) →
owner(B) is true in the state P, i.e. that P |∼ B ∈ A.r. Due
to space constraints, we elide presentation of the proof rules
that derive formulas involving policy predicates applied to
general RT role expressions. A policy label is a conjunction
of policy atoms.

Definition 3.1 A document is a triple 〈id, L, φ〉, where id
is an identifier that uniquely identifies the document, L is a
list of identifiers representing the ancestor documents, and
φ is the policy label associated with the document.

Example 3.2 A policy might contain the following atomic
formula if anyone possessing the document can give it to any-
one who is trusted by principal D: maytell(x, D.trusted). It
would be natural for D to define D.trusted to include any-
one who is considered compliant with auditing by an au-
diting authority that is trusted by D and who D considers
accountable for their actions, for instance because they have
something to lose if auditing finds out they are not adhering
to policy. These objectives are met by the following two RT
statements:

D.trusted←−D.auditable ∩D.accountable
D.auditable←−D.taa.compliant

Here taa is intended to be a role containing trusted audit-
ing authorities and we assume such principals define their
compliant roles to include agents who have been complying
with auditing requirements of the auditing authority and
are scheduled for further audit in the future. If the recipient
is also only allowed to receive the document from principals
that are trusted by a trusted auditing authority, the formula
would become maytell(D.trusted , D.trusted).

Logs & Compliance. There are two kinds of actions that
are always logged: (1) creating a document and (2) transfer-
ring a document. The term action(create(A, id)) indicates
the action in which user A has created the document with id
id; on the other hand action(send(A, B, doc)) indicates the
action in which document doc was transferred from A to B.

Definition 3.3 A log is a sequence of entries, each of which
is either an action or a set of credentials documenting that
at a certain time, certain role memberships held, as required
to satisfy the premise of certain inference rules used to prove
compliance. Each log is associated with a user.

Logs are modeled as lists with most recent entries listed first.
We use an infix dot for the list constructor, which takes an
element as its left argument and a list as its right. The
intended usage of logs is that when an auditor contacts an
agent to audit it, the agent must provide its current log at
that time to show he is compliant. Let A be an agent and l,
its log. When the auditing authority (AA) audits A, it can
do one of two things:

• The authority asks A to show A is (or was) authorized
to have a document doc that A is observed to possess
(or have possessed). In this case, A has to prove that
l `A have(doc).

• The authority asks A to show the legitimacy of the
action act that is found in A’s log. In this case A
has to prove that lprev `A act. Here, lprev is the
prefix of l containing all entries created before act was
performed.

Now let us see how `A is constructed. This is done by using
a number of rules, shown in Figure 1. Note that P is a set
of credentials of the trust management system that are valid
at the time the action is performed and that are needed to
evaluate policies referring to trust management roles. In the
rules, we suppress the details of how it is shown that creden-
tials were valid at the time when the action was performed.
This can be handled straightforwardly by using credential
validity periods and timestamps.

Creation: When an agent creates a document, he becomes
its owner (rule CREA).

Policy Change: A document’s owner may change its policy
arbitrarily (rule CHG). A is an owner if policy φ implies
owner(A) when evaluated in the current state P: P |∼ φ→
owner(A). P is added to the log to record the fact that the
valid policy at the time authorized A making the change to
φ. This enables the validity of the inference to be checked
subsequently by the AA. Note that P need only include the
relatively small number of credentials needed to support the
derivation.

Refinement: When allowed A may refine (i.e. make more re-
strictive) the policy of a document (rule REF). Notice that
this operation is rather powerful: for instance it allows A
to remove a principal from the list of owners. The lati-
tude for policy change permitted by refinement can be made
more limited by adding an argument to mayrefine indicating
which predicates may be refined and which policy predicates
may not be changed; in this case the above proof rule has
to be split into a number of proof rules (one for each policy
predicate) to keep the system at first order level. For the
sake of simplicity, we leave this as it is.

Modification: When allowed A may modify a document (rule
MOD).

Join: When allowed by the policies, A may join two docu-
ments (rule JOIN). Notice that we require the three policies
φi to be equivalent to each other in the current state P. Of
course, if A is the owner (or may refine) one of the docu-
ments, he can adjust the policies before doing the merge.

Send: When allowed by the policy, A may send a docu-
ment to B (rule SEND). When a document 〈id, L, φ〉 is sent
from A to B, A’s log contains send(A, B, 〈id, L, φ〉), while
B’s log contains send(A, B, 〈id′, {A : id}, φ〉). The parent
document, identified by A : id, is identified as id within A’s
namespace. This allows the recipient B to rename the doc-
ument, while allowing the auditing authority to query A’s
log for the provenance of the document.

Receive: B may keep a document received from A provided
that the policy allows for it and that that A is a trustworthy
user. Note that we suppress the details of checking times-
tamps to ensure that the send occurred before B is autho-
rized to possess the document.

Log Extension: A log that justifies the presence of a docu-
ment can be extended arbitrarily to obtain a log that also
justifies the presence of the document (rule EXT).

3.2 Example
Consider the following example. We have two companies:

CITA (in Italy) and CUS (in the US). CITA has a hierar-
chical structure, while CUS , on the other hand, has a flatter
structure

CITA.partner ←− Antonio
CITA.manager ←− Luca
CITA.programmer ←− Sandro
CITA.all ←− CITA.partner
CITA.all ←− CITA.manager
CITA.all ←− CITA.programmer
CUS .ceo ←− Bob
CUS .employee ←− John
CUS .employee ←− David
CUS .all ←− CUS .ceo
CUS .all ←− CUS .employee

In both companies there is an agreement that employees may
trusted all the sources that are trusted by the partner(resp.
ceo) (n.b., employees may be allowed to trust other sources
as well).

Luca.trusted ←− CITA.partner .trusted
Sandro.trusted ←− CITA.partner .trusted
John.trusted ←− CUS .ceo.trusted
David .trusted ←− CUS .ceo.trusted

CITA and CUS decide to join forces on projX , and they
agree that most of the documents developed in projX should
be accessible only to people working at the project, and
that some particularly confidential documents should circu-
late only among the senior personnel. To implement this,
the two companies agree to employ the role names projX
and seniorprojX . In CITA, the partner decides who par-
ticipates to projectX, and decides (in agreement with CUS)
that the managers of CITA should be considered senior peo-
ple, while in CUS , the ceo delegates to John the definition
of the projectX team as well as of the senior people in it.

create(A, id).l `A have(〈id, {id}, owner(A)〉)
CREA

l `A have(〈id, L, φ〉) P |∼ φ → owner(A)

P.l `A have(〈id, L, φ′〉)
CHG

l `A have(〈id, L, φ〉) P |∼ φ → maymodify(A)

P.l `A have(〈id′, L ∪ {id}, φ〉)
MOD

l `A have(〈id, L, φ〉)

x.l `A have(〈id, L, φ〉)
EXT

l `A have(〈id, L, φ〉) P |∼ φ → mayrefine(A) ∧ φ′ → φ

P.l `A have(〈id, L, φ′〉)
REF

l `A have(〈id1, L1, φ1〉) l `A have(〈id2, L2, φ2〉) P |∼ φ1 ↔ φ2 ∧ φ1 ↔ φ3 ∧ φ1 → mayjoin(A)

P.l `A have(〈id3, {id1, id2} ∪ L1 ∪ L2, φ3〉)
JOIN

l `A have(〈id, L, φ〉) P |∼ φ → maytell(A, B)

P.send(A, B, 〈id, L, φ〉).l `A action(send(A, B, 〈id, L, φ〉))
SEND

P |∼ φ → maytell(A, B) P |∼ A ∈ B.trusted

P.send(A, B, 〈id′, {A : id}, φ〉).l `B have(〈id′, {A : id}, φ〉)
RCV

Figure 1: Rules of APPLE

Finally, CITA and CUS trust each other’s definitions of (se-
nior) people working at projectX.

CITA.projX ←− Antonio.projX
CITA.seniorprojX ←− CITA.partner
CITA.seniorprojX ←− CITA.projX ∩ CITA.manager
Antonio.projX ←− Luca
Antonio.projX ←− Sandro
CITA.projX ←− CUS .projX
CITA.seniorprojX ←− CUS .seniorprojX
CUS .projX ←− John.projX
CUS .seniorprojX ←− CUS .ceo
CUS .seniorprojX ←− John.seniorprojX
John.seniorprojX ←− John
John.projX ←− John
John.projX ←− David
CUS .projX ←− CITA.projX
CUS .seniorprojX ←− CITA.seniorprojX

Policies. Having fixed the credentials of the current policy
state, let us consider some example policy labels. The label
of a document that may be seen and modified only by the
senior members of projectX is

owner(CITA.seniorprojX) ∧
maymodify(CITA.seniorprojX) ∧
maytell(CITA.seniorprojX ,CITA.seniorprojX)

The document labeled by the following policy can be seen
by non-senior people, provided that it is given to them by a
senior person

maytell(CITA.seniorprojX ,CITA.projX) ∧ . . .

Let us now consider a document-lifecycle scenario. Luca (a
manager at CITA) creates a document with id id1. Luca’s
log is now create(Luca, id1), and the document he possesses
〈id1, {id1}, owner(Luca)〉. Luca immediately modifies the
policy label to be

φ1 : owner(CITA.seniorprojX) ∧
maymodify(CITA.projX) ∧ mayrefine(CITA.projX) ∧
maytell(CITA.projX ,CITA.projX)

Notice that no credentials need to be used to show that Luca
is authorized to make this change to the policy. Luca next
sends the document to David . At this point, Luca’s host
contains doc2 = 〈id1, {id1}, φ1〉, and Luca’s log is
P2.send(Luca,David , doc2).P1.create(Luca, id1), in which P1

is the empty set and

P2 =

8>>><>>>:
CITA.projX ←− Antonio.projX
CITA.projX ←− CUS .projX
Antonio.projX ←− Luca
CUS .projX ←− John.projX
John.projX ←− David

9>>>=>>>;
At this point David ’s log is P3.send(Luca,David , doc3), where
doc3 = 〈id2, {Luca : id1}, φ1〉 (notice that in David ’s system
the document has been renamed) and P3 consists of creden-
tials that show David has reason to trust Luca.

If now the auditing authority asks Luca to justify the
possession of this document, Luca is able to prove that
logLuca `Luca have(doc2) (This proof is reported in Ta-
ble 1 (top)). Furthermore, if the AA asks Luca to ac-
count for sending doc2 to David , he also has to show that
logLuca `Luca action(send(Luca,David , doc2)). This latter
proof (which encompasses the first one) is reported in Table
1 (middle).

After receiving the document, David plans to modify its
content. As the planned modification would add information
that must be approved by managers before being released,
he begins by refining the policy label to be more restrictive
about where the document can be sent:

φ2 : owner(CITA.seniorprojX) ∧
maymodify(CITA.projX) ∧ mayrefine(CITA.projX) ∧
maytell(CITA.projX ,CITA.seniorprojX)

Now, David ’s host has the document doc4 = 〈id2, {Luca :
id1}, φ2〉, while his log has been extended with a set of cre-
dentials P4 that show he was authorized to refine the pol-
icy. Next David modifies the document, obtaining doc5 =
〈id3, {id2,Luca : id1}, φ2〉, and sends doc5 to his boss, John.
After this operation David ’s log contains

crea
te

(L
u
ca

,id
1)
`

L
u
ca

h
a
v
e(d

oc
1)

C
R

E
A
P

1
|∼

φ
1
→

o
w
n
er

(L
u
ca

)

P
1 .crea

te
(L

u
ca

,id
1)
`

L
u
ca

h
a
v
e(d

oc
2)

C
H

G

crea
te

(L
u
ca

,id
1)
`

L
u
ca

h
a
v
e(d

oc
1)

C
R

E
A
P

1
|∼

φ
1
→

o
w
n
er

(L
u
ca

)

P
1 .crea

te
(L

u
ca

,id
1)
`

L
u
ca

h
a
v
e(d

oc
2)

C
H

G
P

2
|∼

φ
1
→

m
a
ytell(L

u
ca

,D
a
vid

)

P
2 .sen

d
(L

u
ca

,D
a
vid

,d
oc

2).P
1 .crea

te
(L

u
ca

,id
1)
`

L
u
ca

a
ctio

n
(a

2)
S

E
N

D

w
h
ere

a
2

=
sen

d
(L

u
ca

,D
a
vid

,d
oc

2)
a
n
d

a
1

=
crea

te
(L

u
ca

,id
1)

P
3
|∼

φ
→

m
a
y
te

ll(
L
u
ca

,
D

a
v
id

)
P

3
|∼

L
u
ca
∈

D
a
v
id

.tru
sted

P
3

.a
1
`

D
a
v
id

h
a

v
e
(
d
o
c3

)
P

4
|∼

φ
1
→

m
a
y
re

fi
n
e
(
D

a
v
id

)
∧

φ
2
→

φ
1

P
4

.P
3

.a
1
`

D
a
v
id

h
a

v
e
(
d
o
c4

)
P

5
|∼

φ
2
→

m
a
y
m

o
d
ify

(
D

a
v
id

)

P
5

.P
4

.P
3

.a
1
`

D
a
v
id

h
a

v
e
(
d
o
c5

)
P

6
|∼

φ
2
→

m
a
y
te

ll(
D

a
v
id

,
J
o
h
n
)

P
6

.a
2

.P
5

.P
4

.P
3

.a
1
`

D
a
v
id

a
c
tio

n
(
a
2
)

H
ere

w
e

h
av

e
o
m

itted
th

e
ru

le
la

b
els

(fro
m

to
p

to
b
o
tto

m
:

S
E

N
D

,
M

O
D

,
R

E
F
,
R

C
V

).
A

lso
a
1

=
sen

d
(L

u
ca

,D
a
vid

,d
oc

3),
a
n
d

a
2

=
sen

d
(D

a
vid

,J
o
h
n
,d

oc
5).

T
h
e
P

i
a
re

m
in

im
a
l
sets

o
f
cred

en
tia

ls
va

lid
a
t

th
e

a
p
p
ro

p
ria

te
tim

es
a
n
d

su
ffi

cien
t

to
p
rov

e
th

e
a
sso

cia
ted

fo
rm

u
la

s.

d
oc

1
=
〈id

1 ,{
id

1 }
,o

w
n
er

(L
u
ca

)〉
d
oc

2
=
〈id

1 ,{
id

1 }
,φ

1 〉
d
oc

3
=
〈id

2 ,{
L
u
ca

:
id

1 }
,φ

1 〉
d
oc

4
=
〈id

2 ,{
L
u
ca

:
id

1 }
,φ

2 〉
d
oc

5
=
〈id

3 ,{
id

2 ,L
u
ca

:
id

1 }
,φ

2 〉

T
a
b
le

1
:

L
u
ca

’s
p
ro

o
fs

(th
e

fi
rst

a
b
o
v
e
,
th

e
se

c
o
n
d

in
th

e
m

id
d
le

)
a
n
d

D
a
vid

’s
p
ro

o
f
(b

e
lo

w
)

P6.send(David , John, doc5).P5.P4.P3.send(Luca,David , doc3)

where P5 shows David was authorized to modify the docu-
ment and P6 shows he was authorized to send it to John.
At this stage, if the AA asks David to account for send-
ing the document to John, then David has to prove that
logDavid `David action(send(David , John, doc5). For this,
he has to combine rules SEND, MOD, REF and RCV, to
show that he was allowed to receive, refine, modify, and send
the document (the complete proof is reported Table 1).

Finally, after receiving the document from David , John
may decide that this document may be seen by all partici-
pants to projectX; since John is an owner of the document
(John is in CITA.seniorprojX), he can change the policy of
the document from φ2 to φ1.

Note that if there had been an unanticipated emergency
in which all members of the project had to see the document
right away, but John could not be reached, David could go
ahead and send out the document. The AA would detect
this in the next audit, since David was not technically au-
thorized to release the document to all project members.
The AA would then contact the document owners and in-
form them of the infraction. A review of David ’s actions
could then be conducted. It may be that David ’s ability
to override the authorization policy (but then have to take
responsibility for this decision) would then be found to have
been essential to the success of the project. (It also may
be that David will be found to have acted inappropriately,
in which case appropriate steps can be taken because the
document owners are made aware of the situation.)

4. DISCUSSION AND CONCLUSIONS
Although historically access control has been the primary

means of enforcing policy, there has recently been an in-
crease in the amount of logging required, particularly in
business systems. Recent legislation, such as the Sarbanes-
Oxley Act, have increased the amount of monitoring of how
data is collected and used. Thus, much of the infrastruc-
ture needed to enable a posteriori policy enforcement may
already be finding its way into contemporary organizations.

Intended Environment. We now briefly discuss several as-
sumptions concerning the environment in which APPLE is
proposed for use. We assume that all policy-relevant ac-
tions are audited securely. Although this is not happening
yet in practice, there is a clear tendency towards increased
auditability. Industries that deal heavily with confidential
data already do a great deal of logging. In addition, these
and many other industries do not usually allow their em-
ployees to install their own applications. In this case, the
logging could take place at the operating system level, and
the logged material be temporarily cached on secure storage
and later transferred to some log depository.

Naturally, the requirement that all communication be logged
raises scalability concerns. There are several approaches one
might to mitigate this potential problem. For instance, as-
suming that the user is not allowed to modify applications
and the operating system installed, one could allow certain
trusted programs that cannot be used to communicate doc-
uments to be used without logging. For instance, one could
allow the use of restricted versions of VOIP programs and
web browser, where the restriction would be that they would
not allow sending a document, and that they would use a
special protected cache. Thus, logging would be necessary

only when these programs would be used to send or receive
documents, or if a cached document should be moved to
the user area. A related issue is the control of information
hidden within other data, for instance, by use of steganog-
raphy. Our proposal is to disallow the use of the controlled
computer system for transmission of data in which other
information can easily be hidden. Similarly, we propose
to disallow transmission of encrypted material from these
hosts.

Technically, the crucial point is that the audit log should
be rich enough to enable the auditor subsequently to de-
termine whether an operation was authorized or not. This
is virtually impossible if the logged material consist e.g., of
TCP/IP packets, because given a number of logged packets
it is nearly impossible to establish which is the document
and which is the policy that the packed is about. On the
other hand, in the situation like the above in which appli-
cations cannot be installed by the user, we believe it would
be possible to realize a logging at a higher level than the
Network Layer, in such a way that the logged material is
sufficiently expressive to determine documents and policies
involved with the communication. Once this is possible, our
results show that it is possible to determine whether the
operation was allowed or not.

Notice also that our system can be used by the very user
also to determine whether a certain operation is allowed or
not. Indeed, since policies are coupled with the documents
they protect, a user can simply employ a reference monitory
based on the proof system we present to check whether e.g.,
sending a document to a given person would be legitimate.

Data Tracking. A nice side-feature of the system, is that
(assuming that users behave correctly) it is always possible
to check who has received the information that was con-
tained in a specific document. This might be valuable when
it becomes necessary to retract or correct some information.
For instance, suppose that Bob sends around a document
containing some confidential information that is meant only
for the senior people; if Bob later finds out that the infor-
mation was not correct, and should be revised, he may be
able to exploit the system to inform everyone who received
the document (or a derivative of it) of the erroneous infor-
mation. In fact, also if we do not assume that the users
behave correctly, it is to some extent possible to check what
has happened to a specific piece of information. This is eas-
ier if the piece of information is short and structured, like
an email address, and can be done by following the chain
downwards, from the source to the destinations, with the
additional condition that at each step data mining and pat-
tern matching techniques are applied to see if the info has
not spuriously entered a document that was not enlisted as
child of the original one.

Related work. As we previously mentioned, policy enforce-
ment is presently carried out by access control (e.g., [15, 23,
21, 5, 2]), digital right management (e.g., [13, 12, 14, 24]), or
trust management (e.g., [7, 22, 10, 9, 11, 16, 17, 6, 19, 18,
25]); these three areas have a large body of literature. How-
ever, APPLE is radically different from these approaches in
that it does not provide a preventive method for compliance
checking. To mention the papers with some affinity: in Orig-
inator Control [20], the original owner of the data can always
change the access rights on the data, while the current owner

of the data can not do so. Cassandra [4], is a role based
trust-management designed to implement privacy policies
of health records in an electronic health record (EHR) sys-
tem. Under certain conditions, Cassandra allows to “break
the seal” of certain documents, and this is reminiscent o
APPLE’s feature of allowing unauthorized actions. Related
our auditing by means of proofs, Appel and Felten [3] pro-
pose the Proof-Carrying Authentication framework for the
authorization of clients to web servers, by using distributed
policies. Related to the logic of APPLE is [8], where Ced-
erquist et al. outline a logic for accountability, with core
notions of data and agent accountability. APPLE however
is also fundamentally different from [8], in the fact that AP-
PLE’s incorporation of trust management greatly facilitates
its application in decentralized environments, in particular,
the logic in [8], does not allow one to express and refer to
dynamic groups, making it too restrictive for the collabora-
tive environment we focus on. Cederquiest et al. also did not
address practical concerns regarding how the system can be
deployed.

Conclusions. In this paper we make a case for a posteriori
policy enforcement. First, we argue that—particularly for
collaborative environments—detective approaches to policy
enforcement may present great advantages to the usual pre-
ventative ones such as AC or DRM. In particular, detective
approaches can be integrated with preventive approaches to
form a second line of defence which is particularly useful
when data has to move across organizations and when there
is the need to cope flexibly and efficiently with unexpected
situations. Secondly, we provide a theoretical framework for
a-posteriori policy enforcement. The framework is substan-
tially different than any other logic for access control (with
the exception of our previous work [8], discussed above),
in that it relies on the log of the system. This framework
combines a logic for accountability with trust management
to provide a flexible system in which policies include ad-
ministration rights and one can define groups in a simple
and effective way. Finally, we discuss the main (non-trivial)
practical issues that need to be solved to realize this form
of policy enforcement. The salient feature of this approach
is that it does not prevent illegitimate behavior, but rather
deters it. Thus it does not preclude transgressions, but it
reduces their impact to a manageable risk.

5. REFERENCES
[1] European consumer centre.

http://www.euroconsumatori.org/16856v16856d24338.html.
[2] M. Abadi. Logic in access control. In 8th IEEE Symposium

on Logic in Computer Science (LICS), pages 228–233.
IEEE Computer Society Press, 2003.

[3] A. W. Appel and E. W. Felten. Proof-carrying
authentication. In G. Tsudik, editor, Proc of the 6th
Conference on Computer and Communications Security.
ACM Press, 1999.

[4] M. Y. Becker and P. Sewell. Cassandra: flexible trust
management, applied to electronic health records. In IEEE
Computer Security Foundations Workshop (CSFW), pages
139–154. IEEE Computer Society Press, 2004.

[5] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A
logical framework for reasoning about access control
models. ACM Transactions on Information and System
Security (TISSEC), pages 71–127, 2003.

[6] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The KeyNote trust-management system, version 2. IETF

RFC 2704, September 1999.

[7] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In IEEE Computer Society Press, editor,
Proc. 1996 IEEE Symposium on Security and Privacy,
pages 164–173, 1996.

[8] J. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, and
J. I. den Hartog. An audit logic for accountability. In
A. Sahai and W. Winsborough, editors, 6th Int. Workshop
on Policies for Distributed Systems & Networks
(POLICY), pages 34–43. IEEE Computer Society Press,
2005.

[9] D. Clarke, J-E. Elien, C. Ellison, M. Fredette, A. Morcos,
and R. Rivest. Certificate chain discovery in SPKI/SDSI.
Journal of Computer Security, 9(4):285–322, 2001.

[10] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. SPKI certificate theory. IETF RFC 2693,
September 1999.

[11] C. Gunter and T. Jim. Policy-directed certificate retrieval.
Software: Practice & Experience, 30(15):1609–1640,
September 2000.

[12] C. Gunter, S. Weeks, and A. Wright. Models and languages
for digital rights. In Proceedings of the 34th Annual Hawaii
International Conference on System Sciences (HICSS-34),
pages 4034–4038. IEEE Computer Society Press, 2001.

[13] H. Guo. Digital rights management (DRM) using XrML. In
T-110.501 Seminar on Network Security 2001, page Poster
paper 4, 2001.

[14] R. Iannella. Open digital rights management. DRM
Workshop, Position Paper 23, 2001.
http://www.w3.org/2000/12/drm-ws/pp/.

[15] S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. In J. Peckham, editor, Proc.
International Conference on Management of Data
(SIGMOD), pages 474–485. ACM Press, 1997.

[16] T. Jim. SD3: A trust management system with certified
evaluation. In IEEE Symposium on Security and Privacy,
pages 106–115. IEEE Computer Society Press, 2001.

[17] N. Li, B. Grosof, and J. Feigenbaum. Delegation logic: A
logic-based approach to distributed authorization. ACM
Trans. Information System Security, 6(1):128–171, 2003.

[18] N. Li, J. Mitchell, and W. Winsborough. Design of a
role-based trust-management framework. In IEEE
Symposium on Research in Security and Privacy, pages
114–130. IEEE Computer Society Press, 2002.

[19] N. Li, W. Winsborough, and J. Mitchell. Distributed
credential chain discovery in trust management. Journal of
Computer Security, 11(1):35–86, 2003.

[20] J. Park and R. Sandhu. Originator control in usage control.
In IEEE Int. Workshop on Policies for Distributed
Systems and Networks (POLICY), pages 60–66. IEEE
Computer Society Press, 2002.

[21] J. Park and R. Sandhu. Towards usage control models:
Beyond traditional access control. In ACM Symposium on
Access Control Models and Technologies (SACMAT),
pages 57–64. ACM Press, 2002.

[22] R. Rivest and B. Lampson. SDSI — a simple distributed
security infrastructure, 1996.
http://theory.lcs.mit.edu/∼rivest/sdsi11.html.

[23] R. Sandhu and P. Samarati. Access control: Principles and
practice. IEEE Communications Magazine, 32(9):40–48,
1994.

[24] X. Wang, G. Lao, T. De Martini, H. Reddy, M. Nguyen,
and E. Valenzuela. XrML: eXtensible rights markup
language. In M. Kudo, editor, Proc. 2002 ACM workshop
on XML security (XMLSEC-02), pages 71–79. ACM Press,
2002.

[25] S. Weeks. Understanding trust management systems. In
IEEE Symposium on Security and Privacy, pages 94–105.
IEEE Computer Society Press, 2001.

