Trust protocol integrating services’ semantics

Cédric Lévy-Bencheton, Frédéric Le Mouél
{cedric.levy-bencheton, frederic.le-mouel}@insa-lyon.fr

INRIA ARES/CITI, INSA-Lyon, F-69621 FRANCE

Abstract. In high dynamic environments such as Internet or pervasive
computing, different unknown services are provided. When two services
communicate, they share properties to negotiate a provided service. By
introducing trust, services rely on the identity of the participants, to
evaluate a trust level and adapt this provided service. However, it is not
always possible to verify identity. In this paper, we propose a service-to-
service trust protocol based on services’ description. By exchanging their
descriptions, services build trust in each other and adapt the quality of
the provided service through policies.!

1 Introduction

In high dynamic environments, services communicate and share information to
determine a provided service. This process is done with no previous knowledge
of each other. By introducing trust, based on the service’s identity, a service can
adapt the quality of its provided service. Since identity verification is not always
available, a new trust model is needed. In this paper we introduce a service-
to-service trust protocol based on the services’ description. Two services com-
municate and trust each other on disclosed properties, representing a service’s
description. The description is dynamic according to the trust level: properties
can be disclosed or hidden. Then, the provided service is configured according
to the evaluated trust level from one service in another. The trust becomes part
of the services’ life-cycle.

In Section 2 we expose different problems on current trust and services imple-
mentations, in Section 3 we present a service-to-service trust protocol, in Section
4 we present different scenarios implementing our model.

2 Related Works

As we already supposed, an identity-based trust is not always verifiable. Current
approaches rely on certificates, reputation, a machine name/address or a chip to
verify identity [3].

A trust is a value representing an expected action, influenced by the context,
previous exchanges or the relationship between two participants [4]. Combina-
tions are possibles. Trust is able to make decisions or discover new services de-
pending on different rules, described in policies [5]. However, in previous works,

! This work is supported in part by the ACI KAA [1] and by the ARC PRIAM [2].

2 Cédric Lévy-Bencheton, Frédéric Le Mouél

the trust level grants/refuses access to a provided service [6,7]. We propose to
adapt this provided service according to the trust level.

A service can be defined as a behaviour described by its semantic descrip-
tion [8,9]. The discovery of services allows to find a wanted service using its
description [10]. The negotiation leads both sides to exchange properties or sign
a contrat in order to configure the provided service [11]. In classical services
approaches, trust in the requester (asking a service) or the provider (providing
a service) does influence the discovery or negotiation. In [12], an identity-based
trust, using services’ semantics, influences those process, but relies on a trusted
third-party to ensure identity.

In a Service-to-Service environment, the trust evaluation occurs directly be-
tween two services. Thus, identity-based trust is not always possible. As previ-
ously said, the service’s description represents the service’s behaviour defined by
its properties. By introducing a description-based trust, it becomes possible to
configure a provided service and gain trust by relying on this description. We
propose to build trust through the service’s description. We enhance the ser-
vices discovery with trust propagation to find trusted services. Then we adapt
the provided service during the negotiation, by disclosing or hiding properties of
the description, thus raising or lowering trust. In the next Section, we present
our service-to-service trust protocol.

3 A Service-to-Service Trust Protocol

3.1 A Description-based Protocol

We present a trust protocol based on the services’ description. In our approach,
both services trust each other by sending their descriptions. This service-to-
service protocol evaluates trust with no need of third-parties or certificates. The
service’s description defines the service’s behaviour. A description contains a
list of properties (i.e. the service’s “name”, “type” or “creator”). A property
has a name, and a couple (value,trust value). The trust value is determined by
the service, and discloses a property when the service trust in another service
is above the associated trust value. Our protocol expects a service to send its
description in order to be trusted. Hence, the service’s description is filtered: only
properties available for an evaluated trust level are sent. The trust evaluation
and the description filtering are done by policies defined by the service.

A service uses the trust evaluation policy to evaluate trust in a description
by looking at the different properties and their values. The trust is evaluated via
a matching policy: for every property, a score is given to its semantic value. The
resulting trust is the addition of all properties’ scores. The matching policy is
supplied by the service, who associates a numerical value to semantic values of
a property. The service expects others services to have certains properties (such
as the same creator, a common type or a defined name), and gives values high
enough to the matching for those properties. This way, the value supplied by the
trust evaluation policy allows the service to disclose new properties. In order to

Trust protocol integrating services’ semantics 3

simplify this process, services creators should use a standard ontology. The choice
of such an ontology is out of the scope of this paper. Then, the service filters its
own description using the filter policy. This policy takes a service’s description
with trust values and a given trust level to return a filtered description. A filtered
description is a description with no trust values: only properties and values are
disclosed.

Consequently, a service should defined its own properties trust values in
parallel to its policies. A trust value for a property must take into account the
different way to gain trust in the trust evaluation policy. This way, a service
only discloses the property to trusted services with expected properties in their
description, while keeping it secret for untrusted services.

In this protocol, two service roles exist: the requester and the provider. A
requester starts the protocol by looking for a wanted-service, and contacts a
provider. A provider is a service answering to a requester, and can become a
requester in composed services. The requester and the provider represent the
two sides of the communication. The description based approach allows us to
adapt the behaviour of the provided service according to the trust level.

3.2 Protocol Steps

proposeContract()

mrust in the reglstry/_\
looku i h roposeContractf
INITIATION PO @ s enoug @ prop! 0/ NEGO-

signContract()
@ getRating) _/commu-
END @ ICATIO!

Fig. 1. The Protocol Steps

The different steps of the protocol are represented on Fig. 1. The transi-
tions between the different states are decided by policies. The different messages
exchanges are represented on Fig. 2.

The Initiation step is the first step. At the initiation, the requester filters
its own description on a null description, so that a description for an unknown
service is obtained. The requester also creates a description of a wanted-service,
with no trust values.

At the Discovery, the requester sends a message containing those two de-
scriptions to a registry in order to find a provider for the wanted-service. The
registry is a service allowing providers to publish their descriptions. It runs ei-
ther on a machine, listing all its available services, or on a dedicated server. The
registry stores providers’ descriptions, with the trust values, and evaluates trust
in the requester’s description. If the trust is enough, the registry filters its own

4 Cédric Lévy-Bencheton, Frédéric Le Mouél

SERVICE REQUESTER (R) REGISTRY (Registry) SERVICE PROVIDER (P)

) R.getDescription(null)
D’ Registry.lookup(S, D)
D' =R filtered description Description[D_reg’, D_Si...]
S = Wanted service - -

For all services D_Si in description, get their description
D_Si.getDescription(D’)
D_Si'

D_Si' = Service i filtered

D_P = most trusted D_Si* | Sort the services by trust level and

- | selectthe bestone). o
D_f = Rfiltered description|Loop: While the description is not enough, send a better description
onD_P
C=[D_f, D_P, null, null] g4 P.proposeContract(C)

C'=[D_S, D_P', null, null] D= P fitered descrpton

nD_S

End loo|
P P.signContract(Cs)

R.signContract(Cs’) Cs’' = [D_f, D_P, null, SigP]
Cs"=[D_f, D_P, SigR, SigP] Cs”
<~~~ Communication ~~~>
P.getRating(Cs")
R_Rating

R.getRating(Cs")

P_Rating

Fig. 2. Protocol

description, and looks up for matching providers. Those descriptions are filtered
by the registry using its trust level in the requester. The requester receives the
registry’s and provider’s filtered descriptions and evaluates the trust in the reg-
istry. If the trust level is enough, it moves to the next step. On the contrary, the
requester tries to find another registry.

At the Choice, the requester must select a provider from the received list.
The requester trusts the registry on its description, but might not trust the
received providers descriptions. To remove this doubt, the requester sends its
filtered description for an unknown service to every provider. The providers
evaluate trust in the requester and send their filtered description. When the re-
quester has received all descriptions, the most trusted one becomes the provider,
in case this description is not below the minimum trust level set by the requester.
The requester filters a new description based on the provider’s description. If no
provider is chosen, the requester must change the wanted-service or find a new
registry.

At the Negotiation, the requester and the provider exchange a contract
containing the requester’s filtered description, the provider’s filtered descrip-
tion, the requester’s signature and the provider’s signature, in that order. The
trust in a contract is the trust a service has in the description of the other side
of the contract. The requester proposes a contract to the provider containing
the requester’s new filtered description, the selected provider’s description, and
null signatures. The provider evaluates trust in the requester’s description, and
sends back a contract. During this process, different policies are called. The ver-
ify contract policy verifies that the service’s description in a contract is the same
as the latest description sent, and that the other side’s description contains new
properties. To this mean, both sides must keep the latest sent and received de-
scription. However, a service can decide to not disclose anything new, because
the trust on the other side is not enough. In this case, the other side must take

Trust protocol integrating services’ semantics 5

risks and disclose new properties. The temporary trust increase policy temporary
raises the trust level in a service by a certain value. This policy aims at provid-
ing a better description and gain trust. But the other side must not gain too
much information without providing anything. The mazimum number of trust
increase policy specifies the number of times a service is allowed to increase
its description while the other side does not disclose anything new. When this
number is reached, the communication is stopped and the requester must find
another provider. The two services keep exchanging contracts until the trust in
the contract is above the trust acceptation level and move to the agreement.

At the Agreement, the requester sends the contract to the provider. The
provider checks if the contract is the same: the descriptions are the same as the
last sent and received. If it is not the case, the contract is rejected. Otherwise,
the provider signs the contract and sends it back to the requester, which does
the same and sends a double-signed contract to the provider. Both sides store
the contract for a later use.

At the Communication step, the requester uses the provided service.

The Propagation introduces a Rating, a contract with an associated trust
value. A service rates a contract by adding its trust in the other side. The trust
depends on respect of the contract during the communication. If one service
respects its part of the contract, the contract is trusted by the other service.
The requester asks the provider to rate the contract. The provider checks that
the contract is the same, evaluates trust in the requester and adds this trust
value to the contract to create a rating. The rating is sent back to the requester
which can store it, and vice-versa. A service stores a rating in its description,
under the property “history”, with an associated trust value representing its
trust in the other side of the contract. A requester stores the provider’s rating in
its “history” with an associated trust value representing its trust in the provider.
Ratings can later be propagated to other services with the same trust level, to
show proofs of previous exchanges.

4 Implementation: Scenario Illustration

e S € SRR,

Name Value Trust = Name Value [Trust | Name Value Trust Name B Value Trust
@) type mediaplayer 40 @] type registry 40 @)| name servideo 55 name winmedia 80
®| name vic 60 name searchor 60 @| type mediaserver 40 @| type mediaserver 30
@| version 1.2 76 @[interface | registry 10 @)| version 13 70 @) interface 2 10
@ creator videolan | 65 (B) REGISTRY @ creator | videoln | 62 (D) PROVIDER2
@[mterface requester 10 @] interface 1 10
(A) REQUESTER h 3@ (C) PROVIDERL

Fig. 3. The Different Services during the Scenarios

We implement four services in JAVA using the OSGi platform: one requester,
two providers, and a registry. Their description with the trust values are repre-
sented on Fig. 3. The registry stores the providers’ description with trust values.

6 Cédric Lévy-Bencheton, Frédéric Le Mouél

In our implementation, the registry runs on a centralized server, but this does
not influence the way the protocol works. We present three different scenarios
with different trust acceptation values: low with a direct acceptation, medium
with an accepted negotiation, and high with a refused negotiation. The contract
acceptation is done by the requester only, to show the importance of the policies
in the negotiation phase. The different phases and the disclosed properties are
represented on Fig. 3 by circled numbers.

To start the protocol, the requester filters its description for an unknown
service. Its policy specified that an unknown service is trusted at 50%. The
requester discloses all properties below in its description: “type mediaplayer”
and “interface requester” (O Fig. 3(A)). The requester builds a wanted service:
“type mediaserver”. The filtered description and the wanted service are sent to
the registry to find a service provider.

The service registry evaluates trust in the requester to 50%, according to its
trust evaluation policy, and filters its description accordingly (O Fig. 3(B)). The
providers descriptions are also filtered with that trust level (O Fig. 3(C),(D)).
The requester receives the registry’s description (“type registry” and “inter-
face registry”): its trust is above the minimum trust level, defined at 45%. The
requester moves to the choice. Both providers’ descriptions contain their “inter-
face” and “type mediaplayer”.

The requester contacts the two providers on their interface with its filtered
description on an unknown service (O Fig. 3). They evaluate trust to 60% and
return their filtered description: Providerl discloses “name servideo”, Provider2
nothing more. The requester receives the descriptions and evaluates trust in
Providerl to 70%, in Provider2 to 60%. Providerl is selected to be the provider.

The negotiation starts and the requester creates a new contract, by filtering
its description on the provider’s received description: “name vlc” and “creator
videolan” are disclosed (O Fig. 3(A)). The contract is sent to the provider, which
evaluates trust in the contract, i.e. the trust in the requester’s description, to
70%. The provider discloses “creator videolan”, which needs 62% to be disclosed,
and adds this new description to the contract (O Fig. 3(C)). The requester
receives the contract and evaluates trust to 70%. In scenario 1, the contract is
accepted and the exchange moves to the agreement. In scenario 2, the contract
is not accepted: the requester builds a new contract, but no new properties are
disclosed on either side. The requester temporary raises its trust level by 5%,
as defined in its policy, in order to obtain a new description. The same contract
is received again: the requester increases its trust by 5% again and keeps in
memory it is the second time. The requester has a temporary trust of 80% and
discloses “version 1.2” (O Fig. 3(A)). The provider has now enough trust to
disclose “version 1.3” (O Fig. 3(C)). The requester receives the contract and
accepts it in scenario 2. In scenario 3, the trust is not enough: the trust increase
process happens again. However the same description is received three times:
the requester stops the communication.

At the agreement the requester asks the provider to sign the contract. The
provider checks that the contract is the same, signs it and asks the requester to

Trust protocol integrating services’ semantics 7

sign it. The requester does the same and sends the contract to the provider. The
services communicate.

At the propagation, the requester asks the provider to rate the contract. The
provider verifies that the contract is the same, and rates the contract with its
trust in the contract, i.e. its trust in the requester. The rating is sent to the
requester which stores the rating in its description under the “history” property,
with its trust in the contract as the associated trust value. The same process
happens when the requester asks a rating to the provider.

5 Conclusion and Future Work

This paper proposes a service-to-service trust protocol using the services descrip-
tion. This approach does not rely on a third-party service, and does not need to
know the device’s or user’s identity. The services use a trust-enhanced descrip-
tion, filtered according to the trust level in another services’ description. Services
trust each other on their semantics. Two services need to trust each other in or-
der to access a service. The trust is gained by disclosing more properties of their
description. This way, only services trusting each other can communicate.

In future work, the whole protocol should be implemented in the registry,
using the negotiation, agreement, and rating. Different tools must be developed
to calibrate the trust values to use in the service and in policies. The “history”
property should be used to raise trust, using recommendations. Also, the security
of this protocol has not been studied, we rely yet on a secured channel, but we
should evaluate it before a real use.

References

1. French Ministry ACI Project: Knowledge Authentification Ambient (KAA) (2007)
http://kaa.citi.insa-lyon.fr/.

2. INRIA ARC Project: Privacy Issues in Ambient Intelligence (PRIAM) (2007)
http://priam.citi.insa-lyon.fr/.

3. Trusted Computing Group: Trusted Platform Module (2005)

4. Artz, D., Gil, Y.: A Survey of Trust in Computer Science and the Semantic Web.
Web Semantic 5(2) (2007) 58-71

5. Sharmin, M., Ahamed, S.I., Ahmed, S., Li, H.: SSRD+: A Privacy-aware Trust
and Security Model for Resource Discovery in Pervasive Computing Environment.
In: Proc. of the 13th COMPSAC, IEEE Computer Society (2006)

6. Nejdl, W., Olmedilla, D., Winslett, M.: PeerTrust: Automated Trust Negotiation
for Peers on the Semantic Web. In: Proc. of the SDM VLDB 2004. Volume 3178
of Lecture Notes in Computer Science., Springer (2004)

7. Ryutov, T., Zhou, L., Neuman, B.C., Leithead, T., Seamons, K.E.: Adaptive Trust
Negotiation and Access Control. In: Proc. of the 10th ACM SACMAT. (2005)

8. David Martin et al.: OWL-S: Semantic Markup for Web Services (2004)

9. D. Roman et al.: Web Service Modeling Ontology. Applied Ontology 1(1) (2005)
77-106

8

10.

11.

12.

Cédric Lévy-Bencheton, Frédéric Le Mouél

Marin-Perianu, R.S., Hartel, P.H., Scholten, J.: A Classification of Service Discov-
ery Protocols. Technical Report TR-CTIT-05-25, University of Twente, Enschede
(2005)

Lock, R.: Automated Negotiation for Service Contracts. In: Proc. of the 13th
COMPSAC. (2006)

Galizia, S.: WSTO: A Classification-Based Ontology for Managing Trust in Se-
mantic Web Services. In: Proc. of the 3rd ESWC. Volume 4011 of Lecture Notes
in Computer Science., Springer (2006)

