

A procrastinators' guide to compliance control

Why enforce today what you can check tomorrow

"I'll gladly proof tomorrow that I may eat this hamburger today"

Overview

- Current Situation
- Why A-Posteriori Compliance Control (APCC)
- Key Aspects
 - ✓ Trust
 - ✓ Obervability
- Generic APCC system
 - ✓ First step
 - ✓ Policy checkability.
 - ✓ Extentions

2007: the middle ages of compliance control^(*)

 Confidential data Also: used, modified and distributed ✓ Medical records, RFID data, . Policy enforcement ✓ Data should not be **disclosed** to unauthorized users How? Nowadays: DRM, Access Control ✓ Preventative. **Detect and deter** \checkmark No control outside the walls Multi domain; ✓ One security domain; no. different authorities In case of more domains - different policies ✓ Lawyers & Auditors - different policy enforcement systems

*) Shamelessly copied from slides by Sandro –

Why APCC

• Because you like procrastinating...

• Flexibility

- Detect and deter
- ✓ New settings
- ✓ Policies; access if
 - Delete within a day
 - Do not work on competing projects
- Allows policy violation
 - Emergencies, unforeseen circumstances
 - ✓ Justified afterwards
 - ✓ Non-technical check

A-priori and APCC

Combine APCC and a-priori checks

- ✓ Trade off risk ↔ flexibility
- ✓ Break the glass policy
 - Common in medical setting
 - Default a-priori
 - Emergency: break glass, switch to APCC
- ✓ Partially validate
 - User is certified doctor
 - Detailed access rights checking postponed

ALFA

- Audit logic for a-posteriori compliance control
 - ✓ Logical policy language
 - ✓ Storable compliance proofs
 - ✓ Logging and auditing framework
- Key aspects
 - ✓ Action may be logged, could be checked
 - ✓ Misbehaviour possible
- What about *trust*
 - ✓ How much does it deter misuse
 - ✓ Likelihood of getting caught
 - ✓ Ability to cause regret...

Trust, Accountability, Regret

- Trust Management (TM)
 - ✓ Shortly recall
 - ✓ Link to APCC
 - ✓ Role accountability and regret
- Main TM classes
 - ✓ Rule based TM
 - ✓ Reputation based TM

Rule Based Trust Management

- Example systems
 - ✓ Role based trust management (RT)
 - ✓ SDKI/SPKI
 - ✓ ...
- Example scenario
 - ✓ "Student at accredited university gets discount" Shop.Discount ← AccBody.Univ.Student AccBody.Univ ← UT UT.student ← Alice

Rule Based Trust Management

- Distributed, Open
 - Each participant is authority, issues credentials
 - ✓ Participants can join, leave
- Delegation
 - ✓ entrust credentials of others
- Binary
 - ✓ User either fully trusted or not trusted
- Static trust level
 - \checkmark No change based on actions of the user

Rule Based Trust Management

- They work because
 - ✓ No notion of risk so no policy violation
 - Users get defined rights; Alice will get the discount if she is entitled there is no notion of misusing the policy.
- They fail because
 - The policy may be wrong or not able to capture the intended meaning.
- Research issues:
 - ✓ Credential chain discovery
 - Trust Negotiation

Reputation, Recommendation Systems

- Example systems
 - E-bay transaction feedback system
 - ✓ Eigentrust
- Example scenario
 - "Users with good recommendations can buy a book"
 - ✓ Joint ordering action to get bulk discount
 - ✓ More participants means more savings
 - They do have to show up when the book arrives
 - ✓ Allow friends to join and/or recommend others to join
 - Alice joins, Bob does not join but does recommend Charlie.

Reputation Based Trust Management

- Main properties
 - ✓ Distributed, Open
 - Each participant is an authority
 - Issues its own recommendations/feedback.
 - ✓ Delegation
 - Place trust in the recommendations of others.
 - ✓ Multilevel and dynamic trust level
 - level of trust
 - actions influences the level of trust

Reputation Based Trust Management

- They work because:
 - Estimate likelihood of successful transaction
 - ✓ Give negative feedback if needed
- They fail because:
 - ✓ Past results give no guarantee for the future
- Research issues:
 - ✓ Trust metric definitions
 - Efficient and secure collection and exchange of trust related data.

Rule vs. Reputation based systems

- Analogies:
 - ✓ distributed systems;
 - information from different sources
 - combined to reach a decision
 - ✓ open
 - anyone can join or leave the system, issue credentials
 - value of credentials decided by others
- Differences:
 - ✓ Trust value domain
 - Yes/No vs. level of Trust
 - ✓ Role of Risk
 - ✓ Static vs. Dynamic

Rule vs. Reputation based systems

- Static vs. Dynamic
 - ✓ Rule based
 - Alice being student not dependent on buying books
 - ✓ Reputation
 - Subjective probability favourable behaviour
 - Needs to reflect the actions
 - ✓ If Charlie does not collect book
 - His reputation will suffer
 - as will Bob's for recommending Charlie

✓ However...will Charlie really care about this ?

Regret, Punishment and accountability

- Will charlie regret not showing up?
 ✓ only if the lost reputation was valuable to him...
- E.g. *trust* e-bay seller with high reputation because:
 - Past behaviour was good
 - ✓ Will want to keep high reputation
 - can cause regret.
- Can the trustee be held accountable, i.e.
 - ✓ Can misdoings be detected
 - ✓ How much regret
 - ✓ Cost to achieve
 - legal costs, cost to own reputation, etc.

Back to APCC

- Fundamental properties of APCC
 - ✓ Trust
 - ✓ Observability
- Trust in `the observer'
 - ✓ Authority doing the checking
 - ✓ Rule based system appropriate
 - Rules stating reputations may be interesting.
- Trust in users
 - ✓ Regret mechanism
 - evaluate and implement misuse deterrence

A basic APCC system

Actions $a \in A$, States $\sigma \in \Sigma$, Transition system $\rightarrow \subseteq \Sigma \times A \times \Sigma$, Start state $\sigma_0 \in \Sigma$.

A system trace/run: $tr = \sigma_0 \xrightarrow{a_1} \sigma_1 \dots \xrightarrow{a_n} \sigma_n$.

Observables ($o \in O$). Observable traces: *OTr* as traces but with *O* replacing *A*. Observation function *obs* : $A \rightarrow O$.

Observation lifted to traces by: $obs(tr) = \sigma_0 \stackrel{obs(a_1)}{\rightarrow} \sigma_1 \dots \stackrel{obs(a_n)}{\rightarrow} \sigma_n.$

(Models: states are visible but nature of actions may be hidden.)

Policies and auditing

Policies $\phi \in \mathcal{P} = A \times \Sigma \rightarrow \{ok, \ldots\}.$

Policy specifies whether action is allowed in a situation (optionally how bad if not ok).

Infringement $infr(\phi, n, tr)$ of policy ϕ at n in $tr = \sigma_0 \xrightarrow{w} \sigma_{n-1} \xrightarrow{a_n} \sigma_n \xrightarrow{w'} \sigma_m$ when $\phi(a_n, \sigma_{n-1}) \neq ok$.

Audit $\mathcal{A}: OTr \rightarrow \{ok, ...\}.$

Audit specifies whether an observed sequence is compliant (optionally how bad if not ok).

Audit \mathcal{A} marks trace tr iff $\mathcal{A}(obs(tr)) \neq ok$

 \mathcal{A} is ϕ -correct: \mathcal{A} marks trace $tr \Rightarrow \exists n : infr(\phi, n, tr)$. \mathcal{A} is ϕ -complete: \mathcal{A} marks trace $tr \Leftarrow \exists n : infr(\phi, n, tr)$. \mathcal{A} fully audits ϕ : \mathcal{A} is ϕ -correct and complete.

 ϕ is fully APPC checkable if $\exists A : A$ fully audits ϕ .

Possible extensions and future work

- Generalize system
 ✓ Different notions of observer
- Map existing APCC approaches
- Probabilistic model
 - Likelihood detection misbehaviour
 - Risk assessment (e.g. before instating policy)
- Trust feedback
 - Reputation based on audit results

Conclusion...

Work in progress
 (Comments & Ideas welcome)

or:

I will gladly give you a conclusion tomorrow...