

PRIAM Functional Architecture

Work-in-progress

Ciarán Bryce

Frédéric Le Mouël

Marine Marnier

Daniel Le Métayer

Aims of Architecture

↓ Define the actors of the system

- Roles, responsibilities, risks, etc.
- ↓ Define the data types and mechanics of privacy
 - Explain how our approach works at the information system level
 - Interactions among actors, representation of legal rules, etc.
 - In slides, key data types are in <u>blue and underlined</u>
- ↓ Abstract away from implementation details
 - E.g., middleware technology, use (or not) of TPM, cryptographic algorithms

Context

- ↓ Ambient computing systems
 - Person-carried devices
 - Phones, badges, medical sensors, e-money, ...
 - Embedded devices (98% of world's computers)
 - Wireless networking technology integrates on devices
 Bluetooth, Zigbee, WLAN, UMTS, etc.
 - RFID prevalent
 - Used in passports, badges, goods tracking, ...
- ↓ Related and or synonymous paradigms
 - The disappearing computer and ubiquitous computing

Challenge

- \downarrow A huge number of devices
 - One device cannot possibly "know" others
 - I.e., associate an expected behavior to each partner device
 - No centralized identity management (?)
- In autonomous environments
 - No universal trusted third-party or authority
 - No single set of privacy rules to be respected
- ↓ Resources are limited
 - Network coverage
 - CPU/Memory (?); motes can have up to 10KB of RAM
 - Sufficient to run a HTTPs server!
- Cannot control all devices, all the time!

Core Data Types

- ψ <u>Actor</u>
 - Identifiable entity on whose behalf a device operates
 - Person, company, judicial authority,
- ↓ Information Unit (IU)
 - An atomic entity that is associated with an actor (identifier)
 - Actions on Information Units
 - Direct access
 - Transfer of IU from device of IU's actor to another actor
 - Further use
 - Transfer of IU between devices of independent actors
 - Association
 - Set union of IUs (?)

Core Data Types

- ↓ Privacy actions
 - Action executed by actors on IUs that are privacy-related
 - Expressed using a privacy language (DLM)
 - Examples
 - Copy IU to actor
 - Complete anonymity (remove actor identifier from IU)
 - Further-use copy to 3rd party
 - Time-limited IU Holding (IU disappears after timeout)
 - Notification to actor of IU use
 - Information Processor Use
 - e.g., no transfer of IUs to commercial information processors
 - Exclusive Use Policy (To avoid cross-referencing, no IU composition)

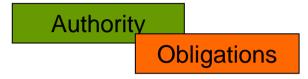
- ...

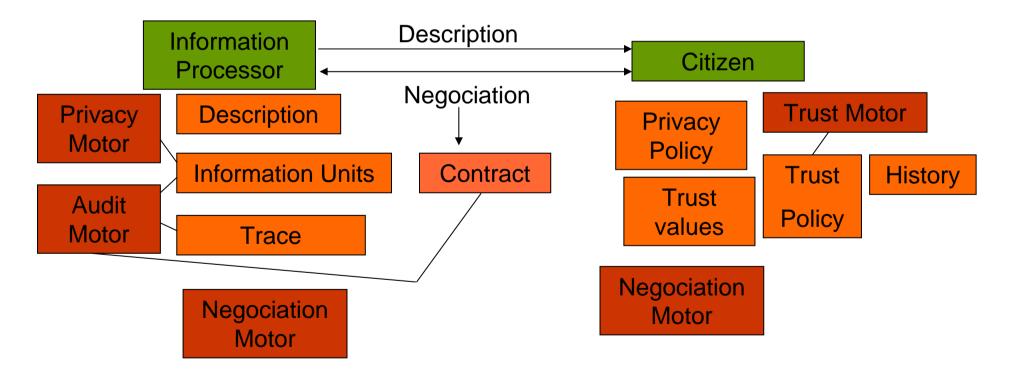
Actor Roles

- ↓ Authority
 - An actor who issues <u>obligations</u> that specify permitted or prohibited <u>privacy action</u> rules
 - E.g., a government issues rules for citizens to follow
 - E.g., a corporation may issues guidelines for employees
 - There may be several authorities
 - With conflicting obligations ?
- ↓ Information processor
 - Runs information processing applications that manipulate IUs
- ↓ Citizen
 - Uses information processing applications on other devices
 - Takes the *risk* of exposing IUs
- ψ An actor can take on all roles at different times

Architecture Principles

- Permit the community of devices and actors to regulate the respect of privacy
- ↓ Two complementary schemes
 - Challenge scheme
 - An authority can challenge an information processor to prove that it has been respecting obligations issued by that authority
 - A citizen can challenge an information processor to prove it has respected privacy in the past
 - Trust framework
 - Citizens can exchange recommendations (<u>trust values</u>) about information processors




Architecture Principles

- ↓ Each information processor application has a <u>description</u>
 - Describes behavior of application
 - This includes privacy actions that application executes
- Citizen and Information Processor may negotiate an acceptable behavior for application interaction
 - Each citizen has a privacy policy for his IUs
 - Set of privacy actions
 - The agreed behavior is formalized as a <u>contract</u>
- ↓ In a citizen information processor challenge
 - The information processor proves that it has adhered to contracts in the past
- ↓ To support challenges
 - Each information processor stores a <u>trace</u> of past interactions and contracts.

Functional Architecture

Challenge Scheme

- ↓ Implements an *a postiori* verification
- ↓ Each Information processor platform possesses an audit motor
 - Mandated by the Authority
 - Contract Respect Checking
 - Inputs: Trace, Personal Data, Obligations, Contracts
 - Contracts respect Obligations
 - Trace respects Contracts
 - Outputs: All obligations and traces not respected
 - PRIAM-compliant System
- ↓ Trace
 - I/O on Services (Description, Contract, Personal Data)

Implementation Concerns

- \checkmark How to represent all ambient system scenarios
 - E.g., RFID tag is just a device in unique role of citizen?
 - Do not want to store a long trace, so
- ↓ TPM or not?
 - If so, by what authority are AiKs certified?
- Privacy action specification language
 - And checking procedure from trace of actions
- ↓ Evaluation of approach...

12

